期刊文献+

一类具有时滞且带有捕食者相互残杀项的捕食模型的时空斑图 被引量:1

Pattern Formation Induced by Time Delay in a Predator-Prey Model with Predator Cannibalism
原文传递
导出
摘要 研究了一类具有时滞且带有捕食者相互残杀项的食饵-捕食者模型的动力学行为.通过数学分析,发现了不同类型的不稳定性,并且详细的给出了图灵不稳定的条件.通过一系列的数值模拟,得到了参数空间中丰富的图灵结构,分别有点状斑图、条状斑图以及点状和条状共存的斑图结构.这些结果表明,受时滞影响的带有捕食相互残杀项的捕食模型具有丰富的动力学,揭示了模型在实际生活中是非常有用的. A predator-prey model with predator cannibalism and time delay was considered. By mathematical analysis, different types of instability are found and the conditions for emerg- ing Turing instability are given in detail. The spatial patterns via numerical simulations are illustrated, which show that the model dynamics exhibits rich parameter space Turing struc- tures, respectively, spots, stripe-like patterns, and coexistence of both. The obtain results show that this system has rich dynamics, these patterns shows that it is useful for predation model both with predator cannibalism and a delay effect to reveal the spatial dynamics in the real model.
出处 《数学的实践与认识》 北大核心 2015年第12期231-239,共9页 Mathematics in Practice and Theory
基金 国家自然科学基金:具有脉冲效应的传染病模型研究(10471040)
关键词 食饵-捕食者 捕食者相互残杀 空间斑图 反应扩散 时滞 predator-prey predator cannibalism pattern formation diffusion time delay
  • 相关文献

参考文献13

  • 1Polls G A. The evolution and dynamics of intraspecific predation[J]. Annual Review of Ecology and Systematics, 1981, 12(1): 225-251.
  • 2Elgar M A, Crespi B J. Cannibalism: Ecology and Evolution Among Diverse Taxa[M]. New York: Oxford Science Publications, 1992.
  • 3Fasani S, Rinaldi S. Remarks on cannibalism and pattern formation in spatially extended prey- predator systems[J]. Nonlinear Dynamics, 2012, 67(4): 2543-2548.
  • 4Nindijin A F, Aziz-Alaoui M A, Cadivel M. Analysis of a predator-prey model with modified Leslie- Gower and Holling-type II schemes with time delay[J]. Nonliner Analysis: Real World Applications, 2006, 7(5): 1104-1118.
  • 5XU R, CHEN L S. Persistence and stability for a two-species ratio-dependent predator-prey system with time delay in a two-patch environment[J]. Computers & Mathematics with Applications, 2000, 40: 577-588.
  • 6Yafia R, Adnani F, Alaoui H. Limit cycle and numerical simulations for small and large delays in a predator-prey model with modified Leslie-Gower and Holling-type II schemes[J]. Nonliner Analysis: Real World Applications, 2008, 9(5): 2055-2067.
  • 7Ruan S. On nonlinear dynamics of predator-prey models with discrete delay[J]. Mathematical Modelling of Nature Phenomena, 2009, 4(2): 140-188.
  • 8YANG Y R, LI W T, WU S L. Stability of traveling waves in a monostable delayed system without quasi-monotonicity. Nonliner Analysis: Real World Applications, 2013, 14(3): 1511-1526.
  • 9YANG Y R, LI W T, WU S L. Exponential stability of traveling fronts in a diffusion epidemic system with delay[J]. Nonliner Analysis: Real World Applications, 2011,12(2):1223-1234.
  • 10Breda D, Visetti D. Existence, multiplicity and stability of endemic states for an age-structured S-I epidemic model[J]. Mathematical Biosciences, 2012, 235(1): 19-31.

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部