期刊文献+

赋广义Orlicz范数Orlicz函数空间的完全k-凸性 被引量:1

Full k-rotundity in Orlicz function spaces endowed with the generalized Orlicz norm
下载PDF
导出
摘要 利用Banach空间凸性理论和广义Orlicz范数的特征,研究了赋广义Orlicz范数Orlicz函数空间完全k-凸性,得到了Orlicz函数空间关于广义Orlicz范数完全k-凸的判别准则. Using convex theories of Banach spaces and the characteristics of the generalized Orlicz norm,the authors studied full k-rotundity of the Orlicz spaces endowed with the generalized Orlicz norm. Criteria of fully k-rotund in Orlicz function spaces endowed with the generalized Orlicz norm are obtained. In the meantime, sufficient and necessary conditions for fully k-rotund of Orlicz sequence spaces also was given directly.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2015年第2期5-8,共4页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11226127) 吉林省教育厅"十二五"科技项目(2014-400) 黑龙江省教育厅科研项目(12531137)
关键词 广义ORLICZ范数 ORLICZ函数空间 完全k-凸 generalized Orlicz norm Orlicz function space fully k-rotund
  • 相关文献

参考文献8

二级参考文献22

  • 1段丽芬,崔云安.Orlicz序列空间的k-端点和k-强端点[J].西南师范大学学报(自然科学版),2004,29(6):911-915. 被引量:2
  • 2冼军,黎永锦,赵志红.中点局部K一致凸性和φ_直和[J].中山大学学报(自然科学版),2005,44(6):1-4. 被引量:2
  • 3段丽芬,崔云安.广义Orlicz范数和广义Luxemburg范数[J].兰州理工大学学报,2006,32(2):131-134. 被引量:12
  • 4段丽芬,崔云安.赋广义Orlicz范数的Orlicz空间的端点[J].浙江大学学报(理学版),2007,34(3):252-256. 被引量:18
  • 5吴从圻,王廷辅,陈述涛,等.Orlicz空间几何理论[M].哈尔滨:哈尔滨工业大学出版社,1986.
  • 6ORLICZ W.(U)ber Eien Gewisse Klasse Von R(a)umen Vom Typus B[M].Poland:Bull Acad Polonaise A,1932.
  • 7LUXEMBURG W A J.Banach Function Spaces[D].Delft-Netherland:Technische Hogeschoolte Delft,1955.
  • 8CHEN ST.Geometry of Orlicz Spaces[M].Warszawa:Dissertations Math,1996.
  • 9CHEN S. Geometry of Orlicz Spaces [ M ]. Dissertations Math, 1996:15 -31.
  • 10CUI YUNAN, DUAN L F, HUDZIK H. Basic Theory of pAmemiya Norm in Odicz Spaces ( 1≤ p ≤oo ) : Extreme Points and Rotundity in Orlicz Spaces Equipped with These Norm [ J ]. Nonlinear Analysis, 2008, 69(5 -6) : 1796 - 1816.

共引文献9

同被引文献9

  • 1HENRION Rt OUTRATA J. Calmness of constraint systems with applications [J]. J Math Program .2005.104 : 437-464.
  • 2MORDUKHOVICH B S. Variational analysis and generalized differentiation I,H .. basic theory [M]. New York: Springer-verlag,2006 : 23-168.
  • 3HELMUT G. First order and second order characterization of metric subregularity and calmness of constraint set mappings [J],SIAM J 0ptim,2011,4: 1439-1474.
  • 4HE Q Hi YANG J.ZHANG B B. Metric subregularity for subsmooth generalized constraint equations in Banach spaces [J/OI].J Applied Mathematics,2012[2014-04-02]. http://www. hindawi. com/journals/jam/2012/185249.
  • 5CLARKE F H. Optimization and nonsmooth analysis [M]. New York: Wiley, 1983: 46-102.
  • 6ZHENG X Y, YANG X Q. Weak sharp minima for semi-infinite optimization problems with applications [J]. SIAM J Optim,2007,18: 573-588.
  • 7ZHENG X Y,NG K F. Linear regularity for a collection of subsmooth sets in banach spaces [J]. SIAM J Optim,2008,19:62-76.
  • 8ZHENG X Y,NG K F. Calmness for L-subsmooth multifunctions in banach spaces [J]. SIAM J Optim,2009,4: 1648-1673.
  • 9王慧勤,雷刚.预条件下含参数的JOR迭代法敛散性分析[J].东北师大学报(自然科学版),2015,47(1):43-47. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部