期刊文献+

基于氧化石墨烯与半导体可饱和吸收镜的锁模飞秒掺铒光纤激光器 被引量:10

Mode-Locked Femtosecond Erbium-Doped Fiber Laser Based on Graphene Oxide versus Semiconductor Saturable Absorber Mirror
原文传递
导出
摘要 分别将氧化石墨烯可饱和吸收镜(GOSAM)与半导体可饱和吸收镜(SESAM)作为可饱和吸收体,在同一掺铒光纤激光器中均实现了全光纤结构、稳定的锁模飞秒脉冲输出。实验用抽运源为中心波长974 nm的半导体激光器,抽运1.4 m长的吸收率为7 d B/m的掺铒光纤,谐振腔总腔长约为12 m。以GOSAM作为可饱和吸收体,当抽运功率为29 m W时,激光器产生稳定的锁模脉冲输出,脉冲宽度最窄为703 fs,光谱中心波长为1557.67 nm,3 d B带宽为3.91 nm。使用调制深度为18%的SESAM作为可饱和吸收体,当抽运功率为32 m W时也可得到锁模脉冲,脉冲宽度为542 fs,光谱中心波长为1561.5 nm,3 d B带宽为5.41 nm。实验表明,新型激光锁模器件氧化石墨烯的可饱和吸收效应可与SESAM媲美,且兼具价格低廉、制备简单的优势,在实现超短脉冲运转方面具有广阔的实际应用前景。 The all-fiber passively mode-locked erbium-doped femtosecond fiber lasers based on semiconductor saturable absorber mirror (SESAM) and graphene oxide saturable absorber mirror (GOSAM) in the same cavity are demonstrated. The fiber ring laser is constituted with 1.4 m Er^3+-doped fiber as gain medium, which is pumped by 974 nm diode laser, and with the total cavity length of 12 m. Stable mode-locked laser pulse train occurrs at 29 mW incident pump power by employing GOSAM as the saturable absorber. The pulse width is measured to be 703 fs, and the center wavelength is 1557.67 nm, and 3 dB spectral bandwidth is corresponding to 3.91 nm. However, inserting SESAM with a modulation depth of 18% in the configuration mentioned above, we can obtain ultrashort pulse at 32 mW pump power, and the pulse width decreases to 542 fs. The laser center wavelength and the 3 dB spectral bandwidth axe 1561.5 nm and 5.41 nm, respectively. Experimental results show that the novel mode-locking device--graphene oxide has the similiar distinguished saturable absorber ability. With its advantages of low price, simple preparation, it seems to be a good candidate for saturable absorbers in achieving ultrashort pulse operation.
出处 《中国激光》 EI CAS CSCD 北大核心 2015年第6期85-90,共6页 Chinese Journal of Lasers
基金 国家自然科学基金(61177048) 北京市自然科学基金重点项目(KZ2011100050011) 天津市自然科学基金(12JCZDJC27400)
关键词 激光器 光纤激光器 掺铒光纤 半导体可饱和吸收镜 氧化石墨烯 锁模 lasers fiber laser erbium-doped fiber SESAM graphene oxide mode-locked
  • 相关文献

参考文献19

  • 1J J O'Neil, J N Kutz, B Sandstede, et al.. Theory and simulation of dynamics and stability of actively modelocked lasers[J]. IEEE J Quantum Electron, 2002, 38(10): 1412-1419.
  • 2N H Seong, D Y Kim. A new figure-eight fiber laser based on a dispersion-imbalanced nonlinear optical loop mirror with lumped dispersive elements[J]. IEEE Photonics Technol Lett, 2002, 14 (4): 459-462.
  • 3R P Davey, R P Fleming, K Smith, et al.. Mode-locked erbium fibre laser with wavelength selection by means of fibre Bragg grating reflector[J]. Electron Lett, 1991, 27(22): 2087-2088.
  • 4K S Novoselov, A K Geim, S V Morozov, et al.. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
  • 5王勇刚,曲遵世,刘杰,曾远康.碳基吸收体被动锁模大功率皮秒激光器[J].中国激光,2012,39(7):1-4. 被引量:6
  • 6Y G Wang, Z S Qu, J Liu, et al.. High efficient sandwich-structured wall paper graphene oxide absorber for Q-switched Nd: GdVO~ laser[J]. Nanotechnology, 2011, 22, 455203.
  • 7Q L Bao, H Zhang, Y Wang, et al.. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Adv Funct Mater, 2009, 19(19): 3077-3053.
  • 8G Sobon, J Sotor, J Jagiello, et al.. Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode- locked fiber laser[J]. Opt Express, 2012, 20(17): 19463-19473.
  • 9刘江,魏汝省,徐佳,徐现刚,王璞.基于6H-SiC衬底外延石墨烯的被动锁模掺镱光纤激光器[J].中国激光,2011,38(8):18-21. 被引量:6
  • 10曹镱,刘佳,刘江,王璞.基于石墨烯被动调Q Nd∶YAG晶体微片激光器[J].中国激光,2012,39(2):40-44. 被引量:8

二级参考文献145

共引文献174

同被引文献79

  • 1刘邦政,李双成,吴政阳,杨曦凝,李林军,崔昊宇.基于黑磷可饱和吸收体的被动调Q Tm∶YAP激光器[J].激光与光电子学进展,2023,60(1):233-238. 被引量:4
  • 2郑鹏飞,恽斌峰.可重构自耦合微环辅助的MZI集成光子滤波器[J].光学精密工程,2020,28(1):1-9. 被引量:7
  • 3谈斌,李智勇,李世忱.非线性光纤环形镜的脉冲透过特性研究[J].物理学报,2004,53(9):3071-3076. 被引量:3
  • 4马海全,刘畅,赵卫,王屹山,陈国夫,程昭.8字形腔锁模掺Yb^(3+)光纤激光器[J].中国激光,2005,32(9):1173-1177. 被引量:19
  • 5Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature photonics, 2008, 2(4): 219-225.
  • 6Mamalis N. Femtosecond laser: the future of cataract surgery[J]. Journal of Cataract & Refractive Surgery, 2011, 37(7): 1177-1178.
  • 7Okhotnikov O, Grudinin A, Pessa M. Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications[J]. New Journal of Physics, 2004, 6(1): 177.
  • 8Yamashita S, Set S Y, Goh C S, et al.. Ultrafast saturable absorbers based on carbon nanotubes and their applications to passively mode- locked fiber lasers[J]. Electronics and Communications in Japan (Part II: Electronics), 2007, 90(2): 17-24.
  • 9Zhang H, Tang D Y, Zhao L M, et al.. Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion[J]. Laser Physics Letters, 2010, 7(8): 591-596.
  • 10Matsas, V J, Richardson D J, Newson T P, et al.. Characterization of a self-starting, passively mode-locked fiber ring laser that exploits nonlinear polarization evolution[J]. Optics Letters, 1993, 18(5): 358-360.

引证文献10

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部