期刊文献+

短长度超高消光比双芯光子晶体光纤偏振分束器 被引量:13

Short Polarization Splitter Based on Dual-Core Photonic Crystal Fiber with Ultra-high Extinction Ratio
原文传递
导出
摘要 提出了一种基于双芯光子晶体光纤(PCF)的具有短长度和超高消光比的偏振分束器,利用全矢量有限元法(FEM)对双芯PCF的耦合特性和偏振分束器的性能进行了数值研究。研究结果表明:增大纤芯间椭圆孔椭圆率、适当提高掺杂折射率可显著降低双芯PCF的耦合长度;基于该双芯PCF设计的偏振分束器在1.55 mm波长处,长度为0.58 mm时,可以实现x,y偏振态的分离,消光比达到82.33 d B,消光比高于20 d B的带宽为70 nm,高于10 d B的带宽达到110 nm,覆盖了C+L波段。这为设计具有短长度、高消光比、宽带特性的PCF偏振分束器提供了一种新的结构。 A polarization splitter based on dual-core photonic crystal fiber (PCF) with short-length and ultra-high extinction ratio is proposed, and the coupling property of the dual-core photonic crystal fiber and the performance of the splitter are studied numerically based on full vector finite element method (FEM). It is found that the coupling length of the dual-core PCF can be reduced obviously by enlarging the ellipticity of the hole between the two cores and adjusting the doped index properly, a polarization splitter based on the proposed dual-core PCF with a length of 0.58 mm is achieved that can separate the x polarized light and y polarization lights and the extinction ratio of the splitter can reach 82.33 dB at the wavelength of 1.55μm. Meanwhile, the bandwidth of extinction ratio more than 20 dB and 10 dB can be as wide as 70 nm and 110 nm, respectively, which covers the C+L wavelength bands. This proposed splitter provides a new structure for designing a splitter with short length, wide bandwidth and high extinction ratio.
出处 《中国激光》 EI CAS CSCD 北大核心 2015年第6期185-191,共7页 Chinese Journal of Lasers
关键词 光纤光学 双芯光子晶体光纤 偏振分束器 全矢量有限元法 超高消光比 fiber optics dual-core photonic crystal fiber polarization splitter full vector finite element method ultra-high extinction ratio
  • 相关文献

参考文献25

  • 1Galan J V, Sanchis P, Garcia J, et al.. Study of asymmetric silicon cross-slot waveguides for polarization diversity schemes[J]. Appl Opt, 2009, 48(14): 2693-2696.
  • 2Lee Y W, Han K J, Lee B, et al.. Polarization independent all fiber muhiwavelength-switchable filter based on a polarization- diversity loop configuration[J]. Opt Express, 2003, 11(25): 3359-3364.
  • 3Peng G D, Tjugiarto T, Chu P L. Polarisation beam splitting using twin elliptic core optical fibres[J]. Electron Lett, 1990, 26(10): 682-683.
  • 4冯睿娟,娄淑琴,鹿文亮,王鑫.超短双芯光子晶体光纤偏光分束器[J].红外与激光工程,2014,43(2):506-510. 被引量:3
  • 5Mangan B J, Knight J C, Birks T A, et al.. Experimental study of dual-core photonic crystal fibre[J]. Elecron Lett, 2000, 36(16): 1358-1359.
  • 6Philip R. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358-362.
  • 7Jonathan C K. Photonic crystal fibers[J]. Nature, 2003, 424(6950): 847-851.
  • 8Lu S, Li W, Guo H, et al.. Analysis of birefringent and dispersive properties of photonic crystal fibers[J]. Appl Opt, 2011, 50(30): 5798-5802.
  • 9Liao J, Sun J, Du M, et al.. Highly nonlineardispersion-flattened slotted spiral photonic crystal fibers[J]. IEEE Photon Teehnol Lett, 2014, 26(4): 380-383.
  • 10耿开胜,关建飞.矩形晶格双芯光子晶体光纤的耦合特性[J].中国激光,2013,40(3):147-151. 被引量:8

二级参考文献100

共引文献53

同被引文献76

  • 1任国斌,王智,娄淑琴,简水生.双芯光子晶体光纤中的模式干涉[J].物理学报,2004,53(8):2600-2606. 被引量:11
  • 2Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys Rev Lett, 1987, 58(20): 2059- 2062.
  • 3Alipour-Banaei H, Serajmohammadi S, Mehdizadeh F. Optical wavelength demultiplexer based on photonic crystal ring resonators[J]. Photonic Network Communications, 2015, 29(2): 146-150.
  • 4Djavid M, Abrishamian M S. Multi-channel drop filters using photonic crystal ring resonators[J]. Optik-International Journal for Light and Electron Optics, 2012, 123(2): 167-170.
  • 5Qiang Z, Zhou W, Soref R A. Optical add-drop filters based on photonic crystal ring resonators[J]. Opt Express, 2007, 15 (4): 1823-1831.
  • 6Abolfazl Abbaspour, Hamed Alipour Banaei, Alireza Andalib. The new design and simulation of an optical add Drop filter based on hexagonal photonic crystal single ring race track resonator[J]. Artificial Intelligence in Electrical Engineering, 2013, 2(7): 44-48.
  • 7Sohrabi F, Mahinroosta T, Hamidi S M. Design of lx3 power splitter based on photonic crystal ring resonator[J]. Optical Engineering, 2014, 53(11): 115104-115104.
  • 8Zhu Z, Brown T G. Full-vectorial finite-difference analysis of microstructured optical fibers[J]. Opt Express, 2002, 10(17): 853-864.
  • 9Goldberg M. Stability criteria for finite difference approximations to parabolic systems[J]. Applied Numerical Mathematics, 2000, 33(1- 4): 509-515.
  • 10J P Berenger, A perfectly matched layer for the absorption of electromagnetic waves[J]. Comput Phys 1994, 114(2): 185- 200.

引证文献13

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部