期刊文献+

隔膜对沉积物微生物燃料电池性能的影响 被引量:1

Influence of Membranes on the SMFC( Sediment Microbial Fuel Cell) Performance
下载PDF
导出
摘要 沉积型微生物燃料电池SMFC(sediment microbial fuel cell)在降低成本和放大实际操作方便性中具有重要地位,既能降解沉积物中有机污染物,又可同时输出电能的特性在自然水生态修复中有着广阔的应用前景。但其较高的氧扩散和基质扩散系数不适合其长期运行,且较低的库仑效率不能高效率地将有机污染物转化为电能。本文针对SMFC这一缺陷,利用质子膜、0.22μm孔径混合纤维膜和0.45μm孔径混合纤维膜对其进行改进,综合分析了其产电性能、物理化学特征、膜污染形态和有机质扩散等指标,0.22μm孔径混合纤维膜具有成本低,氧扩散和基质扩散低,库仑效率高和抗污染能力强等优点,适于拓展SMFC的应用前景。 Sediment microbial fuel cell (SMFC) has an important status in cost reduction and the amplifier of actual operation convenience. The characteristics of the degradation of organic pollutants in sediments and the simultaneous power generation have an extensive application prospect in natural water ecological restoration area. However, the high oxygen diffusion and diffusion coefficient matrix of it was not suitable for its long -- time running, and the low coulomb efficiency could not convert the organic pollutants into electrical energies efficiently. On account of this defect, this article improved the SMFC systems by using PEM (Proton Exchange Membrane), 0. 45μm Synthetic Fabric Membrane and 0. 22μm Synthetic Fabric Membrane, respectively. This article analyzed its electricity generation performance, physicochemical properties, membrane pollution forms and organic matter diffusion and other indexes. Among them, 0. 22μm Synthetic Fabric Membrane had the advantages of low cost, low oxygen diffusion and matrix diffusion, high coulomb efficiency and strong antipollution ability, thus it was suitable for the development of the application prospects of SMFC.
出处 《四川环境》 2015年第3期1-7,共7页 Sichuan Environment
基金 国家自然科学基金(51379063) 江苏省自然科学基金(BK2012413)
关键词 隔膜 沉积物微生物燃料电池 功率密度 膜污染状态 Separator membranes microbial fuel cells power destiny membranes fouling
  • 相关文献

参考文献27

  • 1Mayahi A, Ilbeygi H, Ismail A F, et at. SPEEK/cSMM mem- brane for simultaneous electricity generation and wastewater treat- ment in microbial fuel cell[ J]. Journal of Chemical Technology and Biotechnology, 2015,90(4) :641-647.
  • 2Habermann W, Pommer E. Biological fuel cells with sulphide storage capacity [ J ]. Applied microbiology and bioteehnology, 1991, 35(1) : 128 -133.
  • 3Timmers R A, Strik D P, Hamelers H V, et al. Electricity gen- eration by a novel design tubular plant microbial fuel cell [ J ]. Biomass and Bioenergy, 2013, 51:60 -67.
  • 4Hyeonjin J, Yunghun Y, Kumaran R, et al. Production of algal biomass ( Chlorella vulgaris) using sediment microbial filel cells [ J]. Bioresource Technology, 2012, 109 : 308 - 311.
  • 5Kanr A, Kim J R, Michie I, et at. Microbial fuel cell type bio- sensor for specific volatile fatty acids using acclimated hacterial communities[ J]. Biosensors and Bioelectronies, 2013, 47:50 -55.
  • 6Donovan C, Dewan A, Heo D, et at. Sediment microbial fuel eell powering a submersible ultrasonic receiver: New approach to remote monitoring[ J]. Journal of Power Sources, 2013,233 : 79 -85.
  • 7Chen Z, Huang Y - C, Liang J - H, et al. A novel sediment mi- crobial fuel cell with a biocathode in the rice rhizosphere [ J ]. Bioresouree technology, 2012, 108 : 55 - 59.
  • 8Chen C- Y, Yeh K- L, Aisyah R, et at. Cultivation, photobio- reactor design and harvesting of microalgae for biodiesel produc- tion: a critical review[ J]. Bioresouree technology, 2011, 102 (1): 71 -81.
  • 9Tremouli A, Antonopoulou G, Bebelis S, et al. Operation and characterization of a microbial fuel cell fed with pretreated cheese whey at different organic loads [ J ]. Bioresource technology, 2013, 131 : 380 -389.
  • 10Sevda S, Domingnez - Benetton X, Vanbroekhoven K, et at. High strength wastewater treatment accompanied by power genera- tion using air cathode microbial fuel cell I J]. Applied Energy, 2013, 105: 194-206.

二级参考文献25

  • 1Wang Z, Zheng Y, Xiao Y, et al. Analysis of oxygen reduction and microbial community of air-diffusion biocathode in microbial fuel cells[J]. Bioresource Technology, 2013, 144: 74-9.
  • 2Ringeisen B R, Ray R, Little B. A miniature microbial fuel cell operating with an aerobic anode chamber[J]. Journal of Power Sources, 2007, 165(2): 591-597.
  • 3Min B, Cheng S, Logan B E. Electricity generation using membrane and salt bridge microbial fuel cells[J]. Water Research, 2005, 9(39): 1675-1686.
  • 4Ajayi F F, Kim K Y, Chae K J, et al. Effect of hydrodymamic force and prolonged oxygen exposure on the performance of anodic biofilm in microbial electrolysis cells[J]. International Journal of Hydrogen Energy, 2010, 35(8): 3206-3213.
  • 5Fan Y, Han S K, Liu H. Improved performance of CEA microbial fuel cells with increased reactor size[J]. Energy & Environmental Science, 2012, 5: 8273-8280.
  • 6Quan X, Quan Y, Tao K, et al. Comparative investigation on microbial community and electricity generation in aerobic and anaerobic enriched MFCs[J]. Bioresource Technology, 2012, 128: 259-265.
  • 7Essar D W, Eberly L, Hadero A, et al. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: Interchangeability of the two anthranilate synthases and evolutionary implications[J]. Journal of Bacteriology, 1990, 172(2): 884-900.
  • 8Chang P C, Blackwood A C. Simultaneous production of three phenazine pigments by Pseudomonas aeruginosa Mac 436[J]. Canadian Journal of Microbiology, 1969, 15(5): 439-444.
  • 9Wang Y, Newman D K. Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen[J]. Environmental Science & Technology, 2008, 42(7): 2380-2386.
  • 10Watson D, MacDermot J, Wilson R, et al. Purification and structural analysis of pyocyanin and 1-hydroxyphenazine[J]. European Journal of Biochemistry, 1986, 159(2): 309-313.

共引文献5

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部