期刊文献+

基于不同液晶填充光子晶体光纤传输特性的研究 被引量:9

Transmission characteristics of photonic crystal fibers based on filling different kinds of liquid crystals
原文传递
导出
摘要 将5种不同折射率的液晶分别填入实芯光子晶体光纤的空气孔中,通过改变外场条件,研究其输出光谱的变化规律,并进行了理论模拟分析.结果表明:填充液晶后,输出光谱由全通变为多个波峰的带隙式;同时,液晶的折射率差值越大,其波峰位置越向长波长方向移动,且相对光强的对比度可以达到16 d B;温度由20°C上升到85°C时,波峰向短波长方向移动,最大调控范围可达41 nm;调节电压从0—250 V,输出光谱的相对光强变小,但波峰具有较好的稳定性;在室温下,波峰不随入射光偏振态的变化而变化.该液晶光子晶体光纤可应用于温控可调谐滤波器或电控衰减器. The transmission characteristics of full-filled photonic liquid crystal fibers (PLCFs) which are filled with five kinds of liquid crystals (LCs) are experimentally studied and theoretically analyzed. The influences of temperature and external electric field on the transmission characteristics of PLCFs are also discussed in this paper. The transmission spectra of PLCFs show obvious bandgaps, and the number and the central wavelengths of the bandgaps depend on the average value of the refractive indices of LCs. By changing the temperature from 20℃ to 80℃, a blue shift in the bandgap is observed, and the maximum tuning range of the bandgap is 41 nm. Then, with the voltage turning from 0 V to 250 V, the output power of the transmission spectrum decreases, while the central wavelength of the bandgap is almost unchanged. Finally, the transmission spectrum keeps a good stability, even if the polarization state of the input light changes.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第12期1-6,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61107059,61308052,61077047) 教育部111引智基地项目(批准号:B13015)资助的课题~~
关键词 光子晶体光纤 液晶 光子带隙 传感器 photonic crystal fiber, liquid crystal, photonic bandgap, sensor
  • 相关文献

参考文献2

二级参考文献28

共引文献14

同被引文献56

  • 1刘晚果,潘风明.超导-介质型Fibonacci光子晶体的透射谱与滤波特性分析[J].发光学报,2013,34(9):1250-1257. 被引量:3
  • 2周金苟,杜桂强,刘念华.双周期厚度调制的一维光子晶体的带隙结构[J].南昌大学学报(理科版),2005,29(5):465-467. 被引量:1
  • 3张亚妮,苗润才,任立勇,王韩毅,王丽莉,赵卫.Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre[J].Chinese Physics B,2007,16(6):1719-1724. 被引量:13
  • 4Yablonovitch E.Inhibited spontaneous emission in solid-state physics and electronics[J].Physical review letters,1987,58(20):2059.
  • 5John S.Strong localization of photons in certain disordered dielectric superlattices[J].Physical review letters,1987,58(23):2486.
  • 6D.Shechtman,J.Black,D.Gratias,et al.Metallic phase with long-range orientational order and no translational symmetry[J].Physical Review Letters,1984,53(20):1951.
  • 7Zoorob M.E.,Charlton M.D.B.,Parker G.J.,et al.Complete photonic bandgaps in 12-fold symmetric quasicrystals[J].Nature,2000,404:740-743.
  • 8C.G.Bezerra,E.L.Albuquerque,E.Nogueira Jr.On the spin wave multifractal spectra in magnetic multilayers[J].Physica A:Statistical Mechanics and its Applications,1999,267(1):124-130.
  • 9Becker H,Friend R H,Wilkinson T D.Light emission from wavelength-tunable microcavities[J].Applied physics letters,1998,72(11):1266-1268.
  • 10Jones D C,Cook G.Theory of beam coupling in a hybrid photorefractive-liquid crystal cell[J].Optics communications,2004,232(1):399-409.

引证文献9

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部