期刊文献+

多孔脆性材料对高能量密度脉冲的吸收和抵抗能力 被引量:2

The ability of porous brittle materials to absorb and withstand high energy density pulse
原文传递
导出
摘要 作用在脆性结构材料表面的高能量密度脉冲会以冲击波的形式传播进入材料内部,导致压缩破坏和功能失效.通过设计并引入微孔洞,显著增强了脆性材料冲击下的塑性变形能力,从而使脆性结构材料可以有效地吸收耗散冲击波能量,并抑制冲击诱导裂纹的扩展贯通.建立格点-弹簧模型并用于模拟研究致密和多孔脆性材料在高能量密度脉冲加载下的冲击塑性机理、能量吸收耗散过程和裂纹扩展过程.冲击波压缩下孔洞塌缩,导致体积收缩变形和滑移以及转动变形,使得多孔脆性材料表现出显著的冲击塑性.对致密样品、气孔率5%和10%的多孔样品吸能能力的计算表明,多孔脆性材料吸收耗散高能量密度脉冲的能力远优于致密脆性材料.在短脉冲加载下,相较于遭受整体破坏的致密脆性材料,多孔脆性材料以增加局部区域的损伤程度为代价,阻止了严重的冲击破坏扩展贯通整个样品,避免了材料的整体功能失效. The high energy density pulse input into brittle structural materials will propagate as a shock wave. It induces compression fracture and function failure. In this work, voids are introduced to significantly enhance the shock plastic deformability of brittle structural materials, so that brittle structural materials can effectively absorb the shock wave energy, and restrain the propagation of shock-induced cracks. A lattice-spring model is established to investigate the mechanism of shock plastic, and the processes of energy absorbing and crack expanding in porous brittle materials. The shock wave inside porous brittle material splits into an elastic wave and a deformation wave. The deformation wave is similar to the plastic wave in ductile metal, however, its deformation mechanism is of volume shrinkage induced by voids collapse, and slippage and rotation deformation of scattered tiny scraps comminuted by shear cracks. We calculate the shock wave energy based on particle velocities and longitudinal stresses on nine interfaces of the modeled brittle sample, and further obtain the absorbed energy density. The absorbed energy density curve is composed of two stages: the absorbing stage and the saturation stage. The absorbing stage corresponds to the deformation wave, and the saturation stage corresponds to the shock equilibrium state (Hugoniot state). The energy absorb abilities of the dense sample and porous samples with 5% and 10% porosities are compared based on calculation results. It shows that the ability of the porous brittle material to absorb high energy density pulse is much higher than that of the dense brittle material. The ability of porous brittle materials to restrain the propagation of the shock fracture is also explored. The goal of this design is to freeze the propagation of the shock fracture in the middle of the brittle sample, so that the other parts of the sample keep nearly intact during the shock. Inside the protected area, the designed functions of brittle materials can be accomplished without the disturbance of the shock fracture. This design is used under the short pulse loading condition: the rarefaction wave on the rear of the short pulse will catch up and unload the deformation wave if it moves slowly; the deformation wave and the shock fracture propagate synchronously; when the deformation wave is unloaded, the shock fracture will be frozen in the middle of the porous sample. Under the short pulse loading condition, compared with the dense brittle material, whose entire regions are destructed, the porous brittle material can restrain the propagation and impenetration of the shock fracture, with the cost of increasing the damage extent in part of the sample. This is helpful to avoid the entirely function failure of the brittle structural material.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第12期263-271,共9页 Acta Physica Sinica
基金 中国工程物理研究院重点实验室专项科研计划(批准号:2012-专-03) 冲击波物理与爆轰物理重点实验室基金(批准号:9140C670301120C67248,9140C670302140C67284) 国家自然科学基金(批准号:11272164)资助的课题~~
关键词 多孔脆性材料 高能量密度脉冲 能量吸收 抑制裂纹 porous brittle material, high energy density pulse, energy absorbing, cracks restraining
  • 相关文献

参考文献49

  • 1王峰,彭晓世,单连强,李牧,薛全喜,徐涛,魏惠月.基于神光Ⅲ原型装置的激光加载条件下准等熵压缩实验研究进展[J].物理学报,2014,63(18):310-318. 被引量:5
  • 2Wang F C 2013 Chin. Phys. B 22 124102.
  • 3Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2011 Chin. Phys. B 20 065202.
  • 4Song Y F, Yu G Y, Jiang L L, Zheng X X, Liu Y Q, Yang Y Q 2011 J. Appl. Phys. 109 073103.
  • 5Couturier S, de Rességuier T, Hallouin M, Romain J P, Bauer F 1996 J. Appl. Phys. 79 9338.
  • 6Kawai N, Tsurui K, Hasegawa S, Sato E 2010 Rev. Sci. Instrum. 81 115105.
  • 7de Rességuier T, Kurakevych O O, Chabot A, Petitet J P, Solozhenko V L 2010 J. Appl. Phys. 108 083522.
  • 8Lee B T, Sarkar S K 2009 Scr. Mater. 61 686.
  • 9Chen L Y, Fu Z D, Zhang G Q, Hao X P, Jiang Q K, Wang X D, Cao Q P, Franz H, Liu Y G, Xie H S, Zhang S L, Wang B Y, Zeng Y W, Jiang J Z 2008 Phys. Rev. Lett. 100 075501.
  • 10Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101.

二级参考文献19

  • 1金柯,李平,吴强,金孝刚.爆轰产物驱动飞片运动数值模拟研究[J].爆炸与冲击,2004,24(5):419-424. 被引量:17
  • 2孙承纬.磁驱动等熵压缩和高速飞片的实验技术[J].爆轰波与冲击波,2005(2):84-92. 被引量:7
  • 3Rasorenov S V, Kanel G I, Fortov V E 1991 High Pressure Research 6 225.
  • 4Bourne N K, Rosenberg Z, Field J E 1995 J. Appl. Phys. 78 3736.
  • 5Grady D E 1980 J. Geophys. Research 85 913.
  • 6Jeanloz R 1980 J. Geophys. Research 85 3161.
  • 7格拉汉姆R.A.著,贺红亮译.2010.固体的冲击波压缩(北京:科学出版社)第79页.
  • 8Weir S T, Mitchell A C, Nellis W J 1996 J. Appl. Phys. 80 1522.
  • 9Mashimo T, Kondo K I, Sawaoka A 1980 J. Geophys. Res. 85 1876.
  • 10张福平 杜金梅 刘雨生 刘艺 刘高曼 贺红亮.物理学报,2011,.

共引文献13

同被引文献18

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部