期刊文献+

氘氘-塑料靶丸变收缩比内爆物理实验研究 被引量:1

Variations of implosion performance with compression ratio in plastic DD filled capsule implosion experiment
原文传递
导出
摘要 在神光III原型装置上利用8路6400 J/1 ns激光注入Φ1100μm×1850μm的黑腔内产生约200 e V的高温辐射场均匀辐照填充氘氘燃料的靶丸实现内爆.实验中,保持靶丸的内径一致,通过改变靶丸烧蚀层厚度的方式实现不同收缩比的内爆.通过闪烁体探测器、分幅相机等多套诊断设备获取了中子产额、X光bang-time(聚变反应产生X光时刻)、飞行轨迹、热斑形状等关键内爆参数.结合一维数值模拟表明:对于小收缩比内爆,受到非一维因素的影响小,其Y OC1D(实验测量中子产额与干净一维数值模拟计算结果之比)可以达到34%;对于中等收缩比内爆,受到非一维因素的影响显著,其Y OC1D仅仅为2.3%. The plastic DD filled capsule implosion experiment is performed on Shenguang III prototype laser facility. One- dimensional hydrodynamic numerical simulations show that the implosion compression ratio can be controlled by chang- ing the capsule ablator thickness. In experiments, two types of capsules are studied and most of important implosion parameters are collected, such as neutron yield, X-ray bang-time, trajectory, and shape of hot core. The comparison between post-simulations and experimental results is performed. In our experiments, the neutron yield is 6.8 × 10^7 and YOCID reaches 34% for low compression ratio implosion; the neutron yield is 6.3 × 10^6 and YOC1D is only 2.3% for middle compression ratio implosion. Meantime, the shape of hot core obtains an extra higher Legendre partial (P2 is 18% and P4 is 5%). On another side, the trajectory and bang-time are compared with simulations well.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第12期318-323,共6页 Acta Physica Sinica
关键词 惯性约束聚变 收缩比 内爆对称性 inertial confinement fusion, compression ratio, implosion symmetry
  • 相关文献

参考文献17

  • 1Lindl J 1995 Phys. Plasmas 2 3933.
  • 2Lindl J D, Amendt P, Berger R L, Gail Glendinning S, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339.
  • 3Atzeni S, Meyer-ter-vehn J 著 (沈百飞 译) 2008 惯性聚变物理 (北京: 科学出版社).
  • 4Rygg J R, Jones O S, Field J E, Barrios M A, Benedetti L R, Collins G W, Eder D C, Edwards M J, Kline J L, Kroll J J, Landen O L, Ma T, Pak A, Peterson J L, Raman K, Town R P J, Bradley D K 2014 Phys. Rev. Lett. 112 195001.
  • 5Town R P J, Bradley D K, Kritcher A, et al. 2014 Phys. Plasmas 21 056313.
  • 6Smalyuk V A, Barrios M, Caggiano J A, et al. 2014 Phys. Plasmas 21 056301.
  • 7Rinderknecht H G, Sio H, Li C K, Zylstra A B, Rosenberg M J, Amendt P, Delettrez J, Bellei C, Frenje J A, Gatu Johnson M, Seguin F H, Petrasso R D, Betti R, Glebov V Y, Meyerhofer D D, Sangster T C, Stoeckl C, Landen O, Smalyuk V A, Wilks S, Greenwood A, Nikroo A 2014 Phys. Rev. Lett. 112 135001.
  • 8Haan S W, Lindl J D, Callahan D A, et al. 2011 Phys. Plasmas 18 051001.
  • 9Landen O L, Edwards J, Haan S W, et al. 2011 Phys. Plasmas 18 051002.
  • 10Edwards M J, Lindl J D, Spears B K, et al. 2011 Phys. Plasmas 18 051003.

二级参考文献6

共引文献3

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部