期刊文献+

不同N掺杂构型石墨烯的量子电容研究 被引量:4

Quantum capacitance performance of different nitrogen doping configurations of graphene
原文传递
导出
摘要 超级电容器是一种利用界面双电层储能或在电极材料表面及近表面发生快速可逆氧化还原反应而储能的装置,其特点是功率密度高、循环寿命长.制备出兼有高能量密度的电极材料是当前超级电容器研究的重点.以提高电容储能为目标,通过掺杂N原子来调制石墨烯的电子结构,使用基于密度泛函理论的第一原理计算了不同N掺杂构型石墨烯的态密度和能带结构,拟合出了石墨烯的量子电容,分析了量子电容储能提升的原因. Supercapacitor is an energy storage device which obtains energy from the electrochemical double layer or the redox- type reactions at or beyond the surface of the electrode, which can meet the demands for high power and long cycle life. However, the electrode still has low energy density for supercapacitor device. The design of electrode material is essential for obtaining high capacity. We employ density functional theory based on the first principle to calculate the electronic structures and derive the capacitance of N-doping graphene. We find that the quantum capacitance can be substantially improved by N doping. The physical mechanism of such phenomena is discussed in this paper.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第12期354-359,共6页 Acta Physica Sinica
基金 吉林省教育厅"十二五"科学技术研究项目(批准号:2014-250 2014-260) 吉林省科技厅自然科学基金(批准号:2014-0101061JC) 国家自然科学基金(批准号:11404036) 长春师范大学自然科学基金(批准号:2012-01) 中国博士后面上基金资助的课题~~
关键词 石墨烯 密度泛函理论 N掺杂 量子电容 graphene, density functional theory, nitrogen doping, quantum capacitance
  • 相关文献

参考文献23

  • 1Zhang L P, Xia Z H 2011 J. Phys. Chem. C 115 11170.
  • 2Li X, Zhu G X, Xu Z 2012 Thin Solid Films 520 1959.
  • 3Shao Y Y, Zhang S, Engelhard M H, Li G S, Shao G C, Wang Y, Liu J, Aksay I A, Lin Y H 2010 J. Mater. Chem. 20 7491.
  • 4Hou J B, Shao Y Y, Ellis M W, Moore R B, Yi B L 2011 Phys. Chem. Chem. Phys. 13 15384.
  • 5Wang Y, Shi Z Q, Huang Y, Ma Y F, Wang C Y, Chen M M, Chen Y S 2009 J. Phys. Chem. C 113 13103.
  • 6Panchakarla L S, Govindaraj A, Rao C N R 2010 Inorg. Chim. Acta 363 4163.
  • 7Zeng H, Zhao J, Wei J W, Hu H F 2011 Eur. Phys. J. B 79 335.
  • 8Jeong H M, Lee J W, Shin W H, Choi Y J, Shin H J, Kang J K, Choi J W 2011 Nano Lett. 11 2472.
  • 9Wang H B, Maiyalagan T, Wang X 2012 Acs Catal. 2 781.
  • 10Luo G X, Liu L Z, Zhang J F, Li G B, Wang B L, Zhao J J 2013 ACS Appl. Mater. Interfac. 5 11184.

二级参考文献55

  • 1贾斌, 刘志华, 李小明, 杨永林, 杨麒, 曾光明, 刘医璘, 刘倩倩, 郑施雯. 环境科学, 2009, 30(4), 1228—1231.
  • 2Zhao F., Harnisch F., Schrder U., Scholz F., Bogdanoff P., Herrmann I., Electrochem. Commun., 2005, 7(12), 1405—1410.
  • 3Tang L. H., Wang Y., Li Y. M., Feng H. B., Lu J., Li J. H., Adv. Funct. Mater., 2009, 19(17), 2782—2789.
  • 4Chen D., Tang L. H., Li J. H., Chem. Soc. Rev., 2010, 39(8), 3157—3180.
  • 5Wang Y., Shao Y. Y., Matson D. W., Li J. H., Lin Y. H., ACS Nano, 2010, 4(4), 1790—1798.
  • 6Qu L. T., Liu Y.,Baek J., Dai L. M., ACS Nano, 2010, 4(3), 1321—1326.
  • 7Wei D. C., Liu Y. Q., Wang Y., Zhang H. L., Huang L. P., Yu G., Nano Lett., 2009, 9(5), 1752—1758.
  • 8Reddy A. L. M., Srivastava A., Gowda S. R., Gullapalli H., Dubey M., Ajayan P. M., ACS Nano, 2010, 4(11), 6337—6342.
  • 9Wang X. R., Li X. L., Zhang L., Yoon Y., Weber P. K., Wang H. L., Guo J., Dai H. J., Science, 2009, 324, 768—771.
  • 10Jin Z., Yao J., Kittrell C., Tour J. M., ACS Nano, 2011, 5(5), 4112—4117.

共引文献11

同被引文献6

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部