期刊文献+

热通量和液态锂流速对自由流动液态锂温度分布的影响

Effect of heat flux and liquid lithium velocity on temperature distribution of free flow of liquid lithium
下载PDF
导出
摘要 应用商业软件ANSYS CFX计算了等离子体热通量和液态锂流速对自由流动液态锂温度分布的影响。计算结果表明,导向槽中心附近液态锂温度较高,冷却水入口和出口对应位置液态锂温度最低。液态锂出口温度随着等离子体热通量的增大而线性升高,冷却水流速为1.5m·s-1,热通量分别为0.1MW·m-2和1MW·m-2时,液态锂在出口处对应的温度分别为255.3°C和458.6°C。增大液态锂流速,导向槽内液态锂的温度逐渐降低,但温度变化的幅度较小。计算结果对液态锂回路安全稳定运行提供了一定参考。 Commercial software ANSYS CFX are used to calculate the effect of heat flux and liquid lithium velocity on temperature distribution of the free flow of liquid lithium. The calculated results show that the temperature of liquid lithium is higher near the center of guiding groove, the temperature of liquid lithium is lowest in the location corresponding to inlet and outlet of cooling water. The outlet temperature of liquid lithium rises linearly with the increase of plasma heat flux. When the velocity of cooling water is 1.5m·s^-1, heat flux are 0.1MW·m^-2 and 1MW·m^-2 respectively, the corresponding temperature of liquid lithium at outlet are 255.3°C and 458.6°C. The temperature of liquid lithium within guiding groove dropped gradually with increase of velocity of liquid lithium, but the amplitude of temperature variation is smaller.
出处 《核聚变与等离子体物理》 CAS CSCD 北大核心 2015年第2期163-169,共7页 Nuclear Fusion and Plasma Physics
基金 国家磁约束核聚变能发展研究专项(2013GB114003) 国家自然科学基金(11275135)
关键词 液态锂 等离子体 热通量 温度分布 Liquid lithium Plasma Heat flux Temperature distribution
  • 相关文献

参考文献16

  • 1Martin G, Lipa M. Li3: first step studies of a liquid lithium limiter [J]. Fusion Engineering and Design, 2002, 61-62: 237-243.
  • 2Igor E L, Alexey V V. Experience and technical issues of liquid lithium application as plasma facing material in tokamaks [J]. Fusion Engineering and Design, 2010, 85: 924-929.
  • 3邓柏权,黄锦华,严建成.流动液态锂第一壁的物理可行性研究[R].北京:中国核科技报告,2002,66-70.
  • 4邓柏权,黄锦华,彭利林,严建成.聚变堆包层流动锂液帘与堆芯兼容性评估[J].核聚变与等离子体物理,2003,23(3):170-175. 被引量:2
  • 5Whyte D G, Evans T E, Wong C P, et al. Experimental observations of lithium as a plasma-facing surface in the DIII-D tokamak divertor [J]. Fusion Engineering and Design, 2004, 72: 133-147.
  • 6Majeski R, Boaz M, Hoffrnan D, et al. CDX-U operation with a large area liquid lithium limiter [J]. J. Nucl. Mater., 2003, 313-316: 625-629.
  • 7Robert Kaita, Laura Berzak, Dennis Boyle, et al. Experiments with liquid metal walls: status of the lithium tokamak experiment [J]. Fusion Engineering and Design, 2010, 85: 874-881.
  • 8康伟山,潘传杰,许增裕.液态金属自由表面在聚变堆中的运用研究[J].科学技术与工程,2006,6(6):731-738. 被引量:6
  • 9张秀杰,许增裕,潘传杰,康伟山.液态金属自由表面膜流MHD效应的数值模拟[J].核聚变与等离子体物理,2008,28(1):28-33. 被引量:3
  • 10袁涛,邓伯权,陈志,王晓宇.ITER第一壁、偏滤器靶板和壁的热负荷计算[J].科学技术与工程,2004,4(9):772-774. 被引量:1

二级参考文献96

  • 1康伟山,潘传杰,许增裕.液态金属自由表面在聚变堆中的运用研究[J].科学技术与工程,2006,6(6):731-738. 被引量:6
  • 2王红艳,吴宜灿.ITER中国液态锂铅实验包层模块液态金属流动MHD效应数值模拟[J].核科学与工程,2006,26(2):173-177. 被引量:7
  • 3[5]Honing R E and Kramer D A.Vapor Pressure Data for the Solid and liquid Elements.RCA Rewiew,1969,30:285
  • 4[6]Lyon R L.Liquid Metal Handbook.Sec.Ed.,Washinigton,1955,38-102
  • 5[7]Douglas I B,Epstein L F,Dever J L,et al.J.Am.Chem.Soc.,1955,77(8):2 144
  • 6[8]Hassanein A M.Plasma disruption Modeling and Simulation.Presented at the 11th Topical Meeting on the technology of fusion Energy,ANS, June 19-23,1994
  • 7[9]Hassanein A M.J.Nucl.Mater.1984,122-123:1453
  • 8[10]Mehlhorn T A. A finite material temperature model for ion energy deposition in ion-driven ICF targets,SAND80-0038.1980
  • 9[11]Lindhard J,Scharff M,Schiott H E,et al.Vidensk.Selsk.Mat.Fys.Medd.1963,33(14):125
  • 10[12]Lindhard J,Scharff M.Phys Rev.1964,124:128

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部