期刊文献+

高速车辆横向振动耦合机制形成的主要因素 被引量:2

Study of Main Factors in Forming Lateral Vibration Coupling Mechanism of High-Speed Rolling Stock
下载PDF
导出
摘要 与快铁运用模式不同,高铁运用模式更加强调安全冗余.因而降低蛇行振荡参振质量应当作为高速转向架设计的基本原则.横向振动耦合机制是高铁车辆振动行为的基本规律,其形成具有以下2个主要因素:即轮对(强)迫导向定位形式和抗蛇行高频阻抗作用,两者导致车体摇头大阻尼特征,造成车体对后位转向架接口的横向高频扰动增强,进而构成了横向振动传递媒介.同时这2个因素也是参振质量降低的必要技术条件.降低纵向定位刚度或最小等效锥度,将违背高速转向架的降低参振质量基本原则.因而在350 km/h标准动车组及其技改中,必须实施抗蛇行宽频带吸能机制原始技术创新. Defferent from the rapid rail practice,safety margin is stressed more in high-speed rail practice.Reducing general mass of hunting oscillations should be therefore regarded as the primary principle of highspeed bogie design. The lateral vibration coupling mechanism is then the basic regulation of high-speed rolling stock vibrating behaviors,which is formed by the wheelset force-steering positioning mode and anti-hunting high-frequency impedance. The two factors result in the characteristics of carbody yaw overdamped,consequently the high-frequency disturbances are enhanced in the interface of carbody to rear bogie,and the transmitting media of lateral vibrations are further built up. The two factors are also the necessary conditions to reduce general mass. It is out of general mass reduction primary principle by decreasing the longitudinal stiffness of wheelset poisoning or decreasing the minimum equivalent conicity. So the original technical innovation of anti-hunting wide absorbing-band mechanism should be implemented for the 350 km / h standard trainset and relevant technical improvements.
出处 《大连交通大学学报》 CAS 2015年第4期41-45,68,共6页 Journal of Dalian Jiaotong University
关键词 高铁车辆 横向振动耦合机制 轮对迫导向定位形式 参振质量 抗蛇行高频阻抗 high-speed rolling stock lateral vibration coupling mechanism wheelset forced-steering positio- ning mode general mass anti-hunting high-frequency impedance
  • 相关文献

参考文献5

二级参考文献25

  • 1朴明伟,任晋峰,李娜,兆文忠.基于空簧悬挂特性的高铁车辆垂向振动舒适性对比研究[J].中国铁道科学,2012,33(1):71-77. 被引量:13
  • 2GRAJNERT J,WOLKO P. Library of Components of Pncumatic Suspension System Modeled in MATLAB/SIMULINK and Possibilities of its Application in ADAMS/Rail[A].Haarlem:MSC Software Corporation,2000.
  • 3GAVRILOSKI V,DANEV D,ANGUSHEV K. Mechatronic Approach in Vehicle Suspension System Design[A].Besancon:IFToMM,2007.
  • 4ANNELI O. Methods for Reducing Vertical Carbody Vibrations of a Rail Vehicle:A Literature Survey[R].Stockholm:Royal Institute of Technology,2010.
  • 5ZHENG X,ZOLOTAS A C,GOODALL R M. Modeling of Flexible-Bodied Railway Vehicles for Vibration Sup pression[A].Cowentry:[s.n.],2006.
  • 6IWNICKI S. Handbook of Railway Vehicle Dynamics[M].London:CRC Press,2005.
  • 7POLACH O. Creep Forces in Simulations of Traction Vehicles Running on Adhesion Limit[J].Wear,2005,(7/8):992-1000.
  • 8Foo E, Gooda11 R M. Active suspension control of flexible-bodied railway vehicle using electro hydraulic and electromagnetic actuators [ J ]. Control Engineering Practice, 2000, 8(5) ;507 -518.
  • 9Wu P, Zeng J, Dai H. Dynamic response analysis of railway passenger car with flexible carbody model based on the semi- active suspension [ J ]. Vehicle System Dynamics, 2004(41) :774 - 783.
  • 10Wennberg D, A light weight car body for high-speed trains- literature study [ R]. TRITA -AVE 2010: 16, ISBN 978 - 91-7415-591 -4, KTH, Stockholm, Sweden, 2010.

共引文献24

同被引文献13

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部