期刊文献+

非线性扩散作用下一类四阶抛物方程解研究 被引量:1

The Research of a Class of Fourth Order Parabolic Equation Under the Action of Nonlinear Diffusion
下载PDF
导出
摘要 主要研究相变理论及薄膜润滑理论中出现的一类四阶退化抛物方程,函数及二阶拉普拉斯算子作用下在边界上为0,初始时间为已知函数.通过对时间的半离散,依据椭圆型方程解的存在性,构造逼近解,进而获得相应的抛物方程解的存在性及唯一性.方法上,依赖于对逼近解做半离散迭代估计、能量估计以及紧性讨论. This paper mainly studies a fourth-order degenerate parabolic equation in the field of phase transformation and thin film lubrication with the zero boundary conditions for the unknown function itself and the function under the Laplace operator. The initial condition is a known function. By the semi-discrete method with respect to the time variable,the existence of the elliptic equations and constructing approximate solutions,the corresponding existence and uniqueness of the parabolic equations are obtained. The method relies on semidiscrete iterative estimates,energy estimates and compactness arguments.
作者 梁波 沈慧颖
出处 《大连交通大学学报》 CAS 2015年第4期117-120,共4页 Journal of Dalian Jiaotong University
基金 国家自然科学基金资助项目(11201045)
关键词 四阶偏微分方程 薄膜 存在唯一性 the fourth order partial differential equations thin film existence and uniqueness
  • 相关文献

参考文献7

  • 1CAHN J M, HILLIARD J E. Free energy of a non - uni- form system I, Interfacial free energy [ J ]. J. Chem. Phys, 1958,28:258-367.
  • 2MYERS T G. Thin films with high surface tension [ J ]. SIAM Rev, 1998,40:441-462.
  • 3BERNIS F, FRIEDMAN A. Higher order nonliear de- generate parabolic equations [ J ].J- Differential Equa- tions, 1990,83 : 179-206.
  • 4CARLEN E A, ULUSOY S. An entropy dissipation esti- mate for a thin film type equation [ J ]. Commun. Math. Sci, 2005 ( 3 ) : 171-178.
  • 5KING JR. Two generalization of the thin film equation [ J ]. Math. Comput. Modelling, 2001,34:737-756.
  • 6LIANG B, ZHENG S. Existence and asymptotic behavior of solutions to a nonliear parabolic equation of fourth or- der[J]. J. Math. Anal. Appl. , 2008, 348:234-243.
  • 7SIMON J. Compact sets in the spaceL^p(O,T;B) [J] Ann. Mat. Pura appl. , 1987,146 : 65-96.

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部