期刊文献+

利用经典码构造大码长量子MDS码

On the construction of quantum MDS codes with large length from classical codes
下载PDF
导出
摘要 构造具有良好参数的量子码是量子纠错码研究的一个重要问题.量子MDS码达到了量子Singleton界,参数达到最优.已知的非平凡量子MDS码的码长较小,构造具有较大码长的非平凡量子MDS码是一个公开的热点问题.改进了构造自对偶码的building-up方法,通过这种改进的新的构造方法获得了关于欧氏内积或者Hermitian内积的自正交码,反复迭代构造具有较大码长的量子MDS码,具体给出了针对2种参数的构造方法.还讨论了迭代的技巧和方法,并给出了迭代的步骤和适当的初始码,反复迭代获得较好性质的量子码. Constructing quantum codes with good parameters is of great importance .Quantum MDS codes meet the Singleton bound ,whose parameters are optimal .However ,the known non‐trifle quantum MDS codes have small length .It is an open question attracting much attention to construct quantum MDS codes with lager length .In this paper ,we improve the building‐up methods for self‐dual codes .With the new methods for two kinds of parameters ,we get the self orthogonal codes with Euclidean or hermitian inner product ,and the quantum MDS codes with lager length are gained by iteration .We also discuss the iteration technique ,and gain the iteration steps and proper initial co des .
出处 《辽宁师范大学学报(自然科学版)》 CAS 2015年第2期161-165,共5页 Journal of Liaoning Normal University:Natural Science Edition
基金 海军大连舰艇学院科研发展基金
关键词 量子MDS码 Singleton界 自正交 quantum MDS code Singleton bound self-orthogonal
  • 相关文献

参考文献9

  • 1董学东,陈晓东,卢慧敏,李莉,何丽.一类BCH码的维数[J].辽宁师范大学学报(自然科学版),2007,30(2):129-130. 被引量:1
  • 2董学东,庞晓慧,殷世姣.参数为[p^k,p^(k-1),p]和参数为[2p^k,p^(k-1)(p-1),d≤p]的循环码[J].辽宁师范大学学报(自然科学版),2009,32(4):393-395. 被引量:1
  • 3钟淑琴,马智,许亚杰.基于矩阵方法的量子纠错码构造[J].计算机工程,2010,36(23):266-267. 被引量:2
  • 4LINGFEI J. Quantum stabilizer codes from maximal curves[J:. IEEE Trans Inf Theory, 2014,60(1) :313-316.
  • 5钟淑琴,马智,许亚杰.基于逻辑函数的量子纠错码构造[J].中国科学:信息科学,2010,40(2):249-257. 被引量:2
  • 6GIULIANO G L G. On the construction of nonbinary quantum BCH codes[J]. IEEE Trans Inf Theory,2014,60(3) : 1528 1535.
  • 7JON-LARK K, YOONJIN L. Euclidean and hermitian sel:dual MDS codes over large finite fields[J:. Journal of Combinatorial Theory : Series A, 2004,105 .- 79-95.
  • 8AVANTI K, ANDREAS K, SANTOSH K, et al. Nonbinary stabilizer codes over finite fields[J:. IEEE Trans Inf Theory,2006, 52(11) 14892-4914.
  • 9HUFFMAN W C, PLESS V. Fundarmental of error correcting codes[-M:. New York:Cambridge University Press,2003.

二级参考文献30

  • 1刘太琳,温巧燕,刘子辉.非二元量子循环码的一种图论方法构造[J].中国科学(E辑),2005,35(6):588-596. 被引量:7
  • 2LIU Tailin1,2,3, WEN Qiaoyan1 & LIU Zihui4 1. School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China,2. State Key Laboratory of Integrated Services Network, Xidian University, Xi’an 710071,China,3. Shandong Finance Institute, Jinan 250014, China,4. School of Mathematical Sciences, Peking University, Beijing 100871, China.Construction of nonbinary quantum cyclic codes by using graph method[J].Science in China(Series F),2005,48(6):693-702. 被引量:8
  • 3VAN LINT J H, MAC WILLIAMS F J. Ceneralized quadratic residue codes[J]. IEEE Trans Inform Theory, 1978,24 (2) :730-739.
  • 4ROSEN Kenneth H. Elementary Number Theory and Its Applications[M]. Beijing..Rerson Education Asia Limited and China Machine Press, 2004.
  • 5Rains E M. Nonbinary Quantum Codes[J]. IEEE Trans. onInformation Theory, 1999, 45(9): 1827-1832.
  • 6Calderbank A R, Rains E M, Shor P W, et al. Quantum Error Correction via Codes over F4 [J]. IEEE Trans. on Information Theory, 1998, 44(4): 1369-1387.
  • 7Schlingemann D, Werner R F. Quantum Error correcting Codes Associated with Graphs[J]. Physical Review A, 2002, 65(1): 012308.
  • 8Feng Keqin. Quantum Codes [[6, 2, 3]]p and [[7, 3, 3]]p (p≥3) Exist[J]. IEEE Trans. on Information Theory, 2002, 48(2) : 2384-2391.
  • 9Feng Keqin, Xing Chaoping. A New Construction of Quantum Error-correcting Codes[J]. Transactions of the American Mathematical Society, 2008, 360: 2007-2019.
  • 10MACWILLIAMS F J,SLOANE N J A.The theory of error-correcting codes[M].New York:North-Holland,1977.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部