期刊文献+

支持分布式大数据应用建模的模型理论 被引量:4

A model theory for distributed application modeling on big data
下载PDF
导出
摘要 针对当前尚无面向分布式大数据应用、支持多组件协作应用建模的一般实用模型理论的问题。首先,给出了分布式大数据应用问题的形式化定义和问题求解的一般表达形式;然后,引入包含多结构化状态关系代数、协议代数和交互计算总线格代数的交互式计算范畴,并由此建立了交互式计算模型MIC,作为分布式大数据应用建模的模型理论基础。目前,MIC已在住房和城乡建设部的信息资源统一规划和国家住房信息系统建设中取得了成功的应用。 There is not a universally applicable distributed big data application-oriented model theory currently for supporting multi-component collaborative application modeling. This paper gives the formalized definition of the problem of distributed application on big data and the general expression form for solving it. Next, the interactive computing category consisted of multi-structural state relational algebra, protocol algebra and interactive computing bus lattice algebra is introduced, thereby the model of interactive computing ( MIC) is set up, which is used as the model theory basis of distributed application modeling on big data. So far, the MIC has achieved success in the uni-fied information resource planning and national housing information system construction of the Ministry of Housing and Urban-Rural Development of the People's Republic of China ( MOHURD) .
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2015年第5期671-677,共7页 Journal of Harbin Engineering University
基金 电子政务建模仿真国家工程实验室基金资助项目(发改办高技[2013]2685号) 住房和城乡建设部信息资源规划和电子政务顶层设计基金资助项目((2009)01号) 政府信息化顶层设计研究 民政部中长期政务信息化建设顶层设计和"全民社会保障信息化工程(民政部分)"项目立项论证基金资助项目(GWKY-1330425)
关键词 分布式大数据应用建模 模型理论 范畴 求解算子 distributed application modeling on big data model theory category solving operator
  • 相关文献

参考文献12

  • 1DUMBILLE. Planning for big data [ M ]. Sebastopol, CA : O' Reilly Media, Inc., 2012:9-16.
  • 2CHIN R S, CHANSON S T. Distributed, object-based pro- gramming systems [ J ]. ACM Computing Surveys ( CSUR), 1991, 23(1): 91-124.
  • 3HcYDALSVIK G M, SINDRE G. On the purpose of object- oriented analysis I J]. ACM Sigplan Notices, 1993, 28 (10) : 240-255.
  • 4WEGNER P. Frameworks for active compound documents [EB/OL]. Providence, RI: Brown University Department of Computer Science [ 2014-3-11 ]. http ://www. cs. brown. edu/people/pw: 1-15. i.
  • 5SUNDERAM V S. PVM: A framework for parallel distributed computing[ J]. Concurrency: practice and ex- perience, 1990, 2(4): 315-339.
  • 6TREADWELLJ.The open grid services architecture (OGSA) glossary of terms version 1.5[ S]. Muncie IN: OGF, 2006.
  • 7HELSINGER A,THOME M, WRIGHT T. Cougaar: a scala- ble, distributed multi-agent architecture [ C ]//2004 IEEE International Conference on Systems, Man and Cybernetics. Holland, Netherlands, 2004: 1910-1917.
  • 8WEGNER P, AGHA G. Research directions in concurrent object-oriented programming [ M ]. Cambridge : MIT Press, 1993 : 22-41.
  • 9WEGNER P. Towards empirical computer science[ J]. Mon- ist, 1999, 82: 58-108.
  • 10张文皴.面向领域的软件生产研究与实践[D].北京:北京航空航天大学,2003:1-106.

二级参考文献23

  • 1约翰·H·霍兰,周晓牧等译.隐秩序——适应性造就复杂性[M].上海:上海科技教育出版社,2000.
  • 2维克托·迈尔-舍恩伯格,肯尼思·库克.大数据时代——生活、工作与思维的大变革[M].杭州:浙江人民出版社,2012:30—37.
  • 3DUMBILL E. Planning for big data [ M ]. Sebastopol: O' Reilly Media, Inc.,2012:9-16.
  • 4MADDEN S. From databases to big data [ J ]. IEEE Internet Computing,2012,16(3) :4-6.
  • 5SACCA D, WIEDERHOLD G. Database partitioning in a cluster of processors [ J]. VLDB, 1983:242-247.
  • 6GHANDEHARIZADEH S, DEWITY D J. Hybrid-range par- titioning strategy: a new declustering strategy for multipro- cessor database machines[ C ]//Proceedings of the 16th In- ternational Conference on Very Large Data Bases. San Fran- eiseo : Morgan Kaufmann Publishem Inc., 1990 : 481-492.
  • 7CURINO C, JONES E, ZHANG Y, et al. Schism: a work- load-driven approach to database replication and partitioning [J]. VLDB Endowment, 2010,3(1/2) :48-57.
  • 8WONG E, KATZ R H. Distributing a database for parallel- ism[J]. ACM SIGMOD Record, 1983,13(4) :23-29.
  • 9CHANG F, JEFFREY D, GHEMAWAT S, et al. Bigtable: a distributed structured data storage system[ C]//7th OSDI. Berkeley:USENIX Association, 2006: 305-314.
  • 10DEAN J, GHEMAWAT S. MapReduce: simplified data pro- cessing on large clusters [ J ]. Communications of the ACM, 2008, 51(1) : 107-113.

共引文献16

同被引文献41

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部