期刊文献+

结合SIFT和Harris算法的小型无人机影像拼接方法 被引量:8

Automatic Mosaic of Small Unmanned Aerial Vehicle Images Based on SIFT and Harris Algorithm
下载PDF
导出
摘要 考虑到小型无人机影像的成像过程具有视点离散、视角变化有规律等特点,选择拼接参考基准影像,利用无人机的GPS/IMU参数信息计算图像相交区域来减小图像匹配范围;综合利用Harris特征点提取算法和SIFT特征向量计算方法,进行特征点的提取和特征向量的计算,并用PCA算法进行降维处理;在特征匹配过程中,采用最临近(NN)方法和BBF算法提高匹配速度,应用PROSAC特征点提纯和仿射变换整体平差算法提高匹配的精度;最后利用光度对准和加权平均算法进行光度差异消除,实现了无人机影像的拼接。实验结果表明了文章中的图像拼接方法在准确性、效率方面具有优势。 Due to the disperse and regular characteristics of view points and the view angle of UAV Images, this paper first preconditions the image data, combines the Harris feature points with SIFT feature vectors, extracts Harris feature points, calculates the characteristics radius of feature points and SIFT feature vector, and uses PCA (Principal Component Analysis) to reduce the dimension of SIFT feature vectors. And then the most close method (NN) is used to feature matching, the BBF algorithm is applied to search the nearest neighbor feature for improving the matching speed, the PROSAC algorithm is used to purify initial feature point matching pairs, and motion model parame- ters are calculated. Finally, in order to smooth and improve the result image, photometric registration and weighting-average blending are used. The results of the experiment prove that such algorithm is good in efficiency and accuracy.
出处 《信息工程大学学报》 2015年第3期321-326,377,共7页 Journal of Information Engineering University
基金 广东省自然科学基金资助项目(S2013010016141)
关键词 无人机系列影像 图像拼接 特征点提取 特征匹配 SIFT UAV images image mosaic feature points extraction feature match scale-invariantfeature transform
  • 相关文献

参考文献10

  • 1Brown M , Lowe D G. Automatic panoramic image stitching using invariant features [ J ]. International Journal of Computer Vi-sion ,2007 ,74(1) :59-73.
  • 2Lowe D G. Object recognition from local scale-invariant features [ C ]//Proceedings of the IEEE International Conference onComputer Vision. 1999 : 1150-1157.
  • 3Lowe D G. Distinctive Image Features From Scale-invariant Keypoints[ J]. International Journal of Computer Vision,2004,2(60) :91-110.
  • 4Mikolajczyk K,Schmid C. A Performance Evaluation of Local Descriptorsf J]. IEEE Trans on Pattern Analysis and Machine In-telligence, 2005 ,27( 10) :1615-1630.
  • 5张连怡,王爱平,万国伟,李思昆.基于SIFT的三视图像特征匹配算法[J].计算机工程,2008,34(13):177-179. 被引量:19
  • 6Arya S,Mount D. Approximate Nearest Neighbor Queries in Fixed Dimensions[ C]//Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms. 1993:271-280.
  • 7Arya S,Mount D,Netanyahu N,et al. An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions[J]. Journal of the ACM , 1998 ,45 (6) : 891-923.
  • 8Moore A. An Introductory Tutorial on KD-trees[ R]. London:University of Cambridge,1991 :6-18.
  • 9熊自明,闫鹤.改进SIFT小型无人机视频序列图像自动拼接方法[J].测绘科学,2013,38(5):133-136. 被引量:8
  • 10Brandt S. Maximum Likelihood Robust Regression with Known and Unknown Residual Models[ C]//Proceedings of the ECCV2002.2002:97-102.

二级参考文献21

  • 1Yilmaz A, Javed O, Shah M. Object Tracking: A Survey[J]. ACM Comput. Surv., 2006, 38(4): 45-50.
  • 2Zitova B, Flusser J. Image Registration Methods: A Survey[J]. Image and Vision Computing, 2003, 21 ( 11): 977-1000.
  • 3Mikolajczyk K, Schmid C. A Performance Evaluation of Local Descriptors[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(1): 1 615-1630.
  • 4Gordon I, Lowe D G. What and Where: 3D Object Recognition with Accurate Pose[J]. Toward Category-level Object Recognition, 2006, 30(12): 67-82.
  • 5Hartley R, Zisserman A. Multiple View Geometry in Computer Vision[M]. [S. l.]: Cambridge Univ. Press, 2000.
  • 6Hartley R I. Lines and Points in Three Views and the Trifocal Tensor[J]. International Journal of Computer Vision, 1997, 22(2): 125-140.
  • 7Tort P H S, Zisserman A. Robust Parameterization and Computation of the Trifocal Tensor[J]. IVC, 1997, 15(8): 591-605.
  • 8M Trajkovic, M Hedley. Fast Comer Detection[ J]. Imageand Vision Computing,1998,16(2) :75—87.
  • 9D G Lowe. Object Recognition from Local Scale-invariantFeatures [ C ] //Proceedings of the IEEE International Con-ference on Computer Vision, 1999.
  • 10Lowe D G. Distinctive Image Features From Scale-invari-ant Key points [ J ]. International Journal of Computer Vi-sion, 2004,60(2) :91-110.

共引文献25

同被引文献58

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部