期刊文献+

低功耗芯片级原子钟物理系统热分析 被引量:1

Thermal Analysis of the Low-Power Consumption Physics Package for a Chip-Scale Atomic Clock
下载PDF
导出
摘要 对一种基于玻璃隔热桥结构芯片级原子钟物理系统进行了热学分析。通过理论方法对真空下无封装外壳物理系统各个导热路径进行了分析,同时用有限元方法分析了镀金涂层对其功耗的影响,并且进行了实验验证。实验表明:无封装外壳情况下,在工作区部分外表面镀金涂层可以使物理系统总功耗从93.6 mW降低到72.4 mW,实验值与有限元仿真结果一致。最后对真空下有封装外壳物理系统进行了有限元仿真,仿真结果表明:给工作区部分外表面镀金涂层物理系统盖上封装外壳,可以使物理系统总功耗降低至57.2 mW,在基座和封装外壳内表面都镀上金涂层可以使物理系统总功耗进一步降低至34.8 mW。 The thermal analysis was made for the physics package of the chip-scale atomic clock- based on the glass insulating bridge structure. The each thermal path of the physics package without the package enclosure in vacuum environment was analyzed by theory method, at the same time the influence of a gold coating on its power consumption was analyzed by the finite element method, and the experimental verification was carried out. The experimental results show that a gold coating placed on the part surface of workspace can reduce the total power consumption of physics package from 93.6 mW to 72.4 mW without the package enclosure, and the experimental results are in agreement with the finite element simulation results. Finally, the physics package with package enclosure in vacuum environment was simulated by the finite element method. The simulation results show that covering package enclosure on the physics package with the part surface of workspace placed a gold coating can reduce the total power consumption of the physics package to 57.2 mW, and the gold coating on the inner surface of the substrate and package enclosure can further reduce the total power consumption of the physics package to 34. 8 mW.
出处 《微纳电子技术》 CAS 北大核心 2015年第6期377-383,401,共8页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(61204011 61107026)
关键词 原子钟 物理系统 微机电系统(MEMS) 有限元方法 低功耗 金涂层 热分析 atomic clock physics package miero-electromechanical system (MEMS) finiteelement method low-power consumption gold coating thermal analysis
  • 相关文献

参考文献11

  • 1KITCHING J, KNAPPE S, LIEW L, et al. Chip-scale atomic frequency references: fabrication and performance [C] // Proceedings of the 19th European Frequency and Time Forum. Besancon, France, 2005: 575- 580.
  • 2KITCHING J, KNAPPE S, SCHWINDT P D D, et al. Power dissipation in a vertically integrated chip-scale atomic clock [C] //Proceedings of IEEE International Frequency Control Symposium and Exposition. Montreal, Canada, 2005: 781- 784.
  • 3KNAPPE S, SHAH V, SCHWINDT P D D, et al. A micro- fabricated atomic clock [J]. Applied Physics I.etters, 2004, 85 (9) : 1460- 1462.
  • 4MESCHER M J, LUTWAK R, VARGHESE M. An ultra- low-power physics package for a chip-scale atomic clock [C] //Proceedings of the 13th International Conference on Solid-State Sensors, Actuators and Microsystems. South Ko- rea, 21)1)5:311- 316.
  • 5LUTWAK R, VIATAS P, VARGHESE M, et al. The MAC--a miniature atomic clock [C] //Proceedings of IEEE International Frequency Control Symposium and Exposition. Vancouver, Canada, 201)5: 752- 757.
  • 6LUTWAK R, RASHED A, VARGHESE M, et al. The minia- ture atomic clock pre-production results [C] //Proceedings of Joint IEEE International Frequency Control Symposium/the 21t European Frequency and Time Forum. Geneva, Switzer- land, 2007: 1327-1333.
  • 7LUTWAK R. The chip-scale atomic clock--recent develop- ments [C] //Proceedings of Joint Meeting of the 23ra Euro- pean Frequency and Time Forum/IEEE International Frequen- cy Control Symposium. Besancon, France, 2009: 573- 577.
  • 8de NATALE J F, BORWlCK R L, TSAI C, et al. Compact, low-power chip-scale atomic clock [ C ] //Proceedings of IEEE/ON Position, Location and Navigation Symposium. Monterey, CA, 2008:355-358.
  • 9I.AWS A D, BORWICK R, STUPAR P, et al. Thermal and structural analysis of a suspended physics package for a chip- scale atomic clock [J]. Journal of Electronic Packaging, 21H19. 131 (4): 041005-1- [)41005-9.
  • 10CHUTANI R K, GALLIOU S, PASSILLY N, et al. Ther- mal management of fully LTCC-packaged Cs vapour cell for MEMS atomic clock [J]. Sensors and Actuators: A, 2012, 174: 58-68.

二级参考文献14

  • 1Lutwak R, Emmons D, Riley W and Garvey R M 2002 34th An- nual Precise Time and Time Interval (PTTI) Meeting, Reston, Virginia, p. 539.
  • 2Liew L, Knappe S, Moreland J, Robinson H, Hollberg L and Kitching J 2004 Appl. Phys. Lett. 84 2694.
  • 3Knappe S, Shah V, Schwindt P D D, Hollberg L and Kitching J 2004 Appl. Phys. Lett. 85 1460.
  • 4Gerginov V, Knappe S, Schwindt P D D, Shah V, Liew L, Moreland J, Robinson H G, Hollberg L, Kitching J, Brannon A, Breitbarth J and Popovic Z 2005 2005. IEEE International Frequency Control Sympo- sium and Exhibition, Vancouver, Canada, p. 758.
  • 5Knappe S, Schwindt P D D, Shah V, Hollberg L, Kitching J, Liew L and Moreland J 2005 Opt. Express 13 1249.
  • 6Lutwak R, Deng J, Riley W, Varghese M, Leblanc J, Tepolt G, Mescher M, Serkland D K, Geib K M and Peake G M 2004 36th Annual Precise Time and Time Interval (PTTI) Meeting, Washington DC, USA, p. 339.
  • 7Mescher M, Lutwak R and Varghese M 2005 The Draper Technology Digest 10 26.
  • 8Lutwak R, Vlitas P, Varghese M, Mescher M, Serkland D K and Peake G M 2005 IEEE International Frequency Control Symposium and Ex- hibition, Vancouver, Canada, p. 752.
  • 9Knapkiewicz P, Dziuban J, Walczak R, Mauri L, Dziuban P and Gorecki C 2010 Procedia Engineering of Eurosensors Conference, Linz, Austria, p. 721.
  • 10Vecchio F, Venkatraman V, Shea H, Maeder T and Ryser P 2010 Pro- cedia Engineering of Eurosensors Conference, Linz, Austria, p. 367.

共引文献3

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部