期刊文献+

超高加速度抛射体内电子芯片的两维欧拉—拉格朗日模拟(英文)

Two-dimensional Eulerian-Lagrangian Modeling of Shocks on an Electronic Package Embedded in a Projectile with Ultra-high Acceleration
下载PDF
导出
摘要 文章建立两维欧拉—拉格朗日模型以研究抛射体发射过程对其内部电子芯片的冲击及其机理。该模型计入了火药燃烧的两相流动、抛射体结构运动及流固相互作用,其中火药的固体相和气体相分别采用了线性和指数状态方程描述。通过数值结果分析了以位移、弹口速度、加速度表征的抛射体过程中的冲击响应,并讨论了火药比能对抛射体的加速度冲击及对其内部电子芯片的冲击的影响规律。该模拟方法也可供船用智能火炮系统抗冲击分析及船上电子设备生存能力设计时参考。 A two-dimensional axisymmetric Eulerian-Lagrangian finite element model is developed to investigate the shocks on an electronic package and its underlying mechanism during projectile launch, which incorporates the two-phase flows due to propellant combustion, motions of the struc- tures, and solid-fluid interactions at their interfaces. The unreaeted solid phase and reacted gas phase of the propellant are described by linear and exponential equations of state, respectively. Through nu- merical simulations, the characteristics of the shocks during projectile launch in terms of projectile displacement, muzzle velocity, and acceleration is analyzed. The effect of the internal energy of the propellant on the evolution of shocks is investigated. The transmitted shocks to the payload during projectile launch process are also examined. This modeling technique can be adopted for the predic- tion of shocks analysis and novel design of naval weapon systems, especially for the survivability de- sign of onboard electronics of ships and submarines.
出处 《船舶力学》 EI CSCD 北大核心 2015年第6期737-746,共10页 Journal of Ship Mechanics
基金 Supported by the National Natural Foundation of China(51379193)
关键词 冲击传播 两相流 欧拉-拉格朗日有限元 抛射体发射 shock transmission two phase flows Eulerian-Lagrangian FEM projectile launch
  • 相关文献

参考文献15

  • 1Liu Jianhu. Theory and its applications of ship dynamic responses to non-contact underwater explosions[D]. Wuxi: China Ship Scientific Research Center, 2002.
  • 2Chowdhury M, Frydman AMR, Cordes J, et al. 3-D finite-element gun lunch simulation of a surrogate Excalibur 155 mm guided artillery projectile-modeling capabilities and its implications[C]//22nd International Symposium on Ballistics. Van- couver, Canada, 2005: 259-267.
  • 3Cordes J A, Vega J, Carlucci D, Chaplin R C. Strnctural loading statistics of live gun firings for the army's Excalibur pro- jectile[R]. Armament Research, Development and Engineering Center Technical Report ARAET-TR-05005, 2005.
  • 4Cordes J, Vega J, Carlucci D, Chaplin R C. Design accelerations for the army's Excalibur projectile[R]. Armament Re- search, Development and Engineering Center Technical Report ARAET-TR-05008, 2005.
  • 5Cordes J, Morris S, Gast R, Carlucci D. Muzzle exit (set forward) effects on projectile dynamics[R]. Armament Research, Development and Engineering Center, No.ARAET-TR-06003, 2006.
  • 6Laughlin, Kelly D. Characterization of the parameters that affect projectile balloting using finite element analysis[D]. Ph.D. Dissertation, University of Oklahoma, 2008.
  • 7Peregino IIP J, Bukowski E. Projectile-bore instrumentation for characterization of in-bore environments[C]//23rd Inter- national Symposium on Ballistics. Tarragona, Spain, 2007: 481-488.
  • 8Robbins F W, Raab T S. A lumped-parameter interior ballistic computer code using the TTCP model[R]. US Army Bal- listic Research Laboratory Report BRL-MR-3710, 1988.
  • 9Jaramaz S, Mickovic D, Elek P. Two-phase flows in gun barrel: Theoretical and experimental studies[J]. International Journal of Multiphase Flow, 2011, 37: 475-487.
  • 10Hollis M S L. Use of finite-element stress analysis in the design of a tank-cannon-launched training projectile[R]. US. Army Research Laboratory Report, ARL-MR-149, 1994.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部