摘要
针对说话人训练和识别时间长、噪音环境下识别率低的问题,提出一种CFCC-PCA特征参数的说话人辨识方法。首先提取具有听觉特性的CFCC特征参数,然后对其进行PCA变换,找出具有分辨能力的参数,最后再用这些参数在云服务器中训练和识别说话人。实验表明:该方法可以提高说话人辨识的鲁棒性和识别率,云服务可提高系统实时性。
Training speaker system and speaker identification need a long time, and in the noise environment, the recognition rate is very low, A CFCC-PCA characteristic parameter method is proposed.Firstly, the acoustic characteristics of CFCC characteristic parameters are extracted.Then, CFCC-PCA parameters are extracted by PCA transformation of CFCC characteristic parameters.Finally the speaker models are trained and recognized in cloud.Experiments show that the CFCC-PCA characteristic parameters can improve the robustness and recognition rate of the speaker, the cloud services with efficient processing ability to improve system real-time performance.
出处
《成都工业学院学报》
2015年第2期32-34,共3页
Journal of Chengdu Technological University
基金
中山市科技发展专项基金项目"基于云计算的生物身份认证技术研究及应用"(2013A3FC0350)
中山市科技发展专项基金项目"基于中山地貌的最优化无线网络模型研究"(2013A3FC0318)