期刊文献+

一种改进的快速压缩跟踪算法 被引量:2

An improved fast compressive tracking algorithm
下载PDF
导出
摘要 为研究目标跟踪问题,构造多种不同尺度的滤波器对目标进行滤波,生成目标高维特征;利用符合有限等距性质要求的稀疏矩阵对高维特征进行采样,获得目标低维特征.采用朴素贝叶斯分类器输出与Bhattacharyya系数乘积的形式作为目标与候选目标之间的相似性度量,并选择最大值所对应的候选目标作为下一帧中的目标.文中提出了一种改进的快速压缩跟踪算法.实验表明,该改进的算法能够对目标进行有效跟踪. An improved fast compressive tracking algorithm is proposed in view of the issue of object tracking . Firstly, multiple filters with various scales are constructed , which are used to produce target′s high-dimensional feature by filtering .Secondly , a sparse matrix that satisfies restricted isometry property is employed to generate low-dimensional feature of the target by sampling the high-dimensional one .Finally, product of a naive Bayes classifier′s output and Bhattacharyya coefficient is adopted to measure the similarity between the target and its candidates , the candidate with the maximum product value being selected as the target in the next frame .The experiments show that the proposed method could track the target more efficiently .
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2015年第2期175-179,共5页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 国家自然科学基金资助项目(61103128 61471182 61170120 61305058) 江苏省自然科学基金资助项目(BK20130473 BK20130471 BK20140419)
关键词 目标跟踪 压缩感知 稀疏矩阵 BHATTACHARYYA系数 object tracking compressive sensing sparse matrix Bhattacharyya coefficient
  • 相关文献

参考文献18

  • 1Li Xi, Hu Weiming, Shen Chunhua, et al. A survey of appearance models in visual object tracking [ J ]. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4) : 58.
  • 2Guo Yanwen, Chen Ye, Tang Feng, et al. Object tracking using learned feature manifolds [ J ]. Computer Vision and Image Understanding, 2014, 118: 128- 139.
  • 3王新红,王晶,田敏,杨煜,李志鹏.基于空间边缘方向直方图的Mean Shift跟踪算法[J].中国图象图形学报,2008,13(3):586-592. 被引量:18
  • 4初红霞,谢忠玉,王君祥,李占英,李欣.空间相关背景加权直方图均值漂移目标跟踪[J].控制与决策,2014,29(3):528-532. 被引量:9
  • 5Yang Fan, Lu Huchuan, Yang M H. Robust superpix- el tracking [ J ]. IEEE Transactions on Image Process- ing,2014, 23(4) : 1639 - 1651.
  • 6Zhang Tianzhu, Ghanem Bernard, Liu Si, et al. Ro- bust visual tracking via structured multi-task sparselearning[ J ]. International Journal of Computer Vision, 2013, 101(2) : 367 -383.
  • 7Papoutsakis K E, Argyros A A. Integrating tracking with fine object segmentation [ J ]. Image and Vision Computing,2013, 31:771-785.
  • 8Zhang Kaihua, Zhang Lei, Yang M H. Fast compres- sive tracking[ J]. 1EEE Transactions on Pattern Analy- sis and Machine Intelligence, 2014, 36 ( 10 ) : 2002 - 2015.
  • 9Li P, Hastie T J, Church K W. Very sparse random projections [ C ]//Proceedings of the 12th International Conference on Knowledge Discovery and Data Mining, [S. 1. ] : ACM, 2006.287 -296.
  • 10Strohmer T. Measure what should be measured: pro- gress and challenges in compressive sensing [ J ]. IEEE Signal Processing Letters ,2012, 19(12) : 887 -893.

二级参考文献10

  • 1Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [ J]. IEEE Transactions Pattern Analysis and Machine Intelligence, 2003, 25(5): 564 -577.
  • 2Nummiaroa K, Koller-Meierb E, Gool L V. An adaptive color-based particle filter [ J ]. Image and Vision Computing, 2003, 21 ( 1 ) :99 - 110.
  • 3M Isard, Blake A. Condensation-condltional density propagation for visual tracking [ J ]. International Journal of Computer Visiol,, 1998, 29(1): 5-28.
  • 4Perez P, Hue C, Vermaak J,et al. Color-based probabilistic tracking [ A]. In: proceedings of the 7th European Conference on Computer Vision [ C ] , Berlin, Germany, 2002 : 661 - 675.
  • 5Dalai N, Triggs B. Histograms of oriented gradients for human detection [ A]. In : Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[ C ] , San Diego, CA, USA, 2005, 1 : 886 - 893.
  • 6Birchfield S. Rangarajan S. Spatiograms versus histograms for regionbased tracking [ A ]. In: Proceedings of iEEE Computer Society Conference on Computer Vision and Patterm Recognition, San Diego, CA,USA, 2005, 2:1152 - 1157.
  • 7Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift [J]. IEEE Computer Vision and Pattern Recognition, 2000, 4(2) : 142-149.
  • 8熊剑,刘建业,赖际舟,谢征.基于二阶插值滤波的粒子滤波改进算法研究[J].控制与决策,2009,24(6):907-910. 被引量:8
  • 9文志强,朱艳辉,李长云,邓晓军.基于广义松弛方法的快速均值偏移算法的研究[J].控制与决策,2011,26(8):1209-1213. 被引量:5
  • 10李冠彬,吴贺丰.基于颜色纹理直方图的带权分块均值漂移目标跟踪算法[J].计算机辅助设计与图形学学报,2011,23(12):2059-2066. 被引量:49

共引文献25

同被引文献15

  • 1DíAZ-FéLIX L A,ESCOBAR-TOLEDO M,WAISSMAN J,et al.Evaluation of heliostat field global tracking error distributions by Monte Carlo simulations[J].Energy procedia,2014,49:1308-1317.
  • 2GRABNER H,BISCHOF H.On-line boosting and vision[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2006:260-267.
  • 3MEI X,LING H.Robust visual tracking and vehicle classification via sparse representation[J].IEEE transactions on pattern analysis and machine intelligence,2011,33(11):2259-2272.
  • 4DONOHO D L.Compressed sensing[J].IEEE transactions on information theory,2006,52(4):1289-1306.
  • 5STERNIG S,GODEC M,ROTH P M,et al.Transient Boost:on-line boosting with transient data[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.San Francisco:IEEE,2010:22-27.
  • 6ZHANG K,ZHANG L,YANG M H.Real-time compressive tracking[C]//Proceedings of 2012 12th European Conference on Computer Vision.Florence:Springer Berlin Heidelberg,2012:864-877.
  • 7CHANG W C,CHO C W.Online boosting for vehicle detection[J].IEEE transactions on systems man&cybernetics Part B,2010,40(3):892-902.
  • 8MAZINAN A H,AMIR-LATIFI A.Applying mean shift,motion information and Kalman filtering approaches to object tracking[J].ISA transactions,2012,51(3):485-497.
  • 9REN D,QU F,LüK,et al.A gradient descent boosting spectrum modeling method based on back interval partial least squares[J].Neurocomputing,2015,171:1038-1046.
  • 10SHI Q,ERIKSSON A,VAN DEN HENGEL A,et al.Is face recognition really a compressive sensing problem?[C]//2011IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2011:553-560.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部