摘要
为研究目标跟踪问题,构造多种不同尺度的滤波器对目标进行滤波,生成目标高维特征;利用符合有限等距性质要求的稀疏矩阵对高维特征进行采样,获得目标低维特征.采用朴素贝叶斯分类器输出与Bhattacharyya系数乘积的形式作为目标与候选目标之间的相似性度量,并选择最大值所对应的候选目标作为下一帧中的目标.文中提出了一种改进的快速压缩跟踪算法.实验表明,该改进的算法能够对目标进行有效跟踪.
An improved fast compressive tracking algorithm is proposed in view of the issue of object tracking . Firstly, multiple filters with various scales are constructed , which are used to produce target′s high-dimensional feature by filtering .Secondly , a sparse matrix that satisfies restricted isometry property is employed to generate low-dimensional feature of the target by sampling the high-dimensional one .Finally, product of a naive Bayes classifier′s output and Bhattacharyya coefficient is adopted to measure the similarity between the target and its candidates , the candidate with the maximum product value being selected as the target in the next frame .The experiments show that the proposed method could track the target more efficiently .
出处
《江苏科技大学学报(自然科学版)》
CAS
北大核心
2015年第2期175-179,共5页
Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金
国家自然科学基金资助项目(61103128
61471182
61170120
61305058)
江苏省自然科学基金资助项目(BK20130473
BK20130471
BK20140419)