期刊文献+

具备高压解耦电路的新型无电解电容微逆变器研究 被引量:3

A Novel Electrolytic Capacitor-less Micro-inverter with High Voltage Gain Power Decoupling Circuit
下载PDF
导出
摘要 提出了一种新颖的单相无电解电容光伏并网微逆变器。该微逆变器主电路拓扑由光伏器件输出侧功率解耦电路和反激式逆变器构成。解耦电路将光伏器件输出能量储存在高电压电容中,以减小解耦电容容量,实现小容量薄膜电容替代大容量电解电容。反激式变换器以薄膜电容为主要电源,避免光伏器件工作受逆变干扰,简化了微逆变器控制策略。同时,详细分析微逆变器电路的工作原理,并阐述电路主要参数的设计依据。最后,搭建一台100W并网微逆变器样机,实验结果验证了所提出微逆变器及控制策略的有效性。 A novel micro-inverter topology without electrolytic capacitor is proposed, which is applied in a single stage photovoltaic power conversion system. The topology is based on a conventional flyback combining with decoupling circuit located in the photovoltaic module output side. The power decoupling circuit can store the PV output power in high voltage capacitor, which reduces the decoupling capacitance, thus allowing for long lifetime film capacitor to be used. The flyback inverter uses the film capacitor as main power source and avoids interference with the photovoltaic module, which simple the control strategy of micro-inverter. Operation principle of the novel micro-inverter is analyzed in detail and the design principle of the main parameters is presented in this paper. A 100W prototype of the proposed micro-inverter has been built and tested. Experimental results are provided to demonstrate the validity of the proposed circuit and its control scheme.
出处 《电气工程学报》 2015年第4期82-90,共9页 Journal of Electrical Engineering
关键词 微逆变器 功率解耦 光伏发电 反激式变换器 Micro-inverter, electrolytic capacitor-less, power decoupling, flyback converter
  • 相关文献

参考文献3

二级参考文献45

  • 1张承慧,叶颖,陈阿莲,杜春水.基于输出电流控制的光伏并网逆变电源[J].电工技术学报,2007,22(8):41-45. 被引量:76
  • 2Casadei D, Grandi G, Rossi C. Single-phase single-stage photovoltaic generation system based on a ripple correlation control maximum power point tracking[J]. IEEE Transactions on Energy Conversion, 2006, 21(2): 562-568.
  • 3Wu Libo, Zhao Zhengming, Liu Jianzheng. A single-stage three-phase grid-connected photovoltaic system with modified MPPT method and reactivepower compensation[J]. IEEE Transactions on Energy Conversion, 2007, 22(4): 881-886.
  • 4Kadri R, Gaubert maximum power J, Champenois point tracking grid-connected inverter based on G. An improved for photovoltaic voltage-oriented control[J]. IEEE Transactions on Industrial Electronics, 2011, 58(1): 66-75.
  • 5Daizhan Cheng, Xiaoming Hu, Tielong Shen Analysis and design of nonlinear control systems[M] Beijing: Science Press&Springer, 2010.
  • 6Changliang Xia, Qiang Geng, Xin Gu, et al. Input-output feedback linearization and speed control of a surface permanent-magnet synchronous wind generator with the Boost-chopper Converter[J]. IEEE Transactions on Industry Electronics, 2012, 59(9): 3489-3500.
  • 7Dong Eok Kim, Dong Choon Lee. Feedback linearization control of three-phase ups invertersystems[J]. IEEE Transactions on Industrial Electronics, 2012, 57(3): 963-968.
  • 8Shengyi Liu, Dougal R. Dynamic multiphysics model for solar array[J]. IEEE Transactions on Energy Conversion, 2002, 17(2): 285-294.
  • 9Jingqing Han. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906.
  • 10Esram T, Chapman P. Comparison of photovoltaic array maximum power point tracking techniques[J].IEEE Transactions on Energy Conversion, 2007, 22(2): 439-449.

共引文献75

同被引文献22

引证文献3

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部