期刊文献+

一种高效的关联规则连续增量更新改进算法 被引量:1

An Efficient Incremental Updating Algorithm for Association Rules
下载PDF
导出
摘要 针对FP-growth算法存在的不能进行增量更新,以及已有基于FP-growth的增量更新算法效率不高、不支持连续更新等问题,在FP-tree基础上,提出了增量更新改进算法FPIUA2,其适用于数据集连续增加的情形,适用于稀疏型数据集和稠密型数据集、支持连续执行.实验表明:该算法的效率远高于FPgrowth和已有的增量更新算法,其执行效率较FP-Growth、FPUA和FIUA2算法提高了1个数量级,并且具有很好的可扩展性. In order to overcome the shortage of FP - growth algorithm and the improved algorithms basedon the FP - growth strategy, three updating algorithms FPIUA2 which based on the EFP - tree are proposed.It' s very fast in the case of the data set continually being added . Both theoretical and practical analysisshow that our new algorithms are better than existed algorithms and are suitable for both sparse and densedata set. Thus it is about an order of magnitude faster than the FP - Growth algorithm, FPUA algorithm andFIUA2 algorithm.
出处 《哈尔滨师范大学自然科学学报》 CAS 2015年第3期49-52,共4页 Natural Science Journal of Harbin Normal University
基金 绍兴市科技计划项目(2013B70023)
关键词 关联规则 FP-GROWTH 增量更新算法 Association rules FP - growth Incrementally updating algorithm
  • 相关文献

参考文献6

二级参考文献42

  • 1谈克林,孙志挥.一种FP树的并行挖掘算法[J].计算机工程与应用,2006,42(13):155-157. 被引量:10
  • 2Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C]//Proceedings of the ACM SIG- MOD International Conference Management of Date,Washington,1993:207-216.
  • 3Ha n J,Kamber M.Data mining:Concepts and techniques[M].Beijing: High Education Press, 2001.
  • 4Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C]//Proc 1993 ACM-SIGMOD Int Conf Management of Data, Washington, DC, May 1993 : 207-216.
  • 5Savasere A,Omiecinski E,Navathe S.An efficient algorithm for mining association rules in large databases[C]//Proc of the 21st VLDB Conference, Zurich, Switzerland, 1995 : 432-443.
  • 6Agrawal R C,Agarwal C,Prasad V V V.A tree projection algorithm for generation of frequent itemscts[J].Journal of Parallel and Distributed Computing:Special Issue on High Performance Data Mining, 2000.
  • 7Han J W,Pei J,Yin Y W,et al.Mining frequent patterns without candidate generation[C]//Proc ACM-SIGMOD Int Conf on Management of Data(SIGMOD'00),DalIas,TX,2000:1-12.
  • 8Han J,Pei J,Yin Y,et al.Mining frequent patterns without candidate generation : A frequent-pattern tree approach[J].Data Mining and Knowledge Discovery, 2004,8 : 53-87.
  • 9孙淑玲.代数结构[M].合肥:中国科技大学出版社,1990..
  • 10Agrawa lR, Imielinski T, Swami A. Mining association rules between sets of items in large databases (C). In: Buneman P, Jajodia S,eds. Proc. of the ACM SIGMOD Conf. on Management of Data (SIGMOD'93). New York: ACM Press, 1993. 207~216.

共引文献93

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部