摘要
In this work, the influence of sub-zero Celsius treatment and tempering on the mechanical and thermal stability of retained austenite in beating steel were assessed by tensile test and DSC. Compared with traditional quenched and tempered treatment, sub-zero Celsius treatment obviously decreases the volume fraction of retained austenite. Moreover, the mechanical stability of retained austenite was enhanced due to the accumulation of compressive stresses in retained austenite after sub-zero Celsius treatment and tempering. Meanwhile, the morphology of retained austenite changed from film-like to blocky with austenitization temperature increasing, and the mechanical stability of film-like retained austenite is higher than that of blocky one. The DSC results showed that the activation energy of retained austenite decomposition slightly increased through sub-zero Celsius treatment and tempering. This result may probably be ascribed to partitioning of carbon during tempering. However, the temperature at which retained austenite starts to decompose is unchanged.
In this work, the influence of sub-zero Celsius treatment and tempering on the mechanical and thermal stability of retained austenite in beating steel were assessed by tensile test and DSC. Compared with traditional quenched and tempered treatment, sub-zero Celsius treatment obviously decreases the volume fraction of retained austenite. Moreover, the mechanical stability of retained austenite was enhanced due to the accumulation of compressive stresses in retained austenite after sub-zero Celsius treatment and tempering. Meanwhile, the morphology of retained austenite changed from film-like to blocky with austenitization temperature increasing, and the mechanical stability of film-like retained austenite is higher than that of blocky one. The DSC results showed that the activation energy of retained austenite decomposition slightly increased through sub-zero Celsius treatment and tempering. This result may probably be ascribed to partitioning of carbon during tempering. However, the temperature at which retained austenite starts to decompose is unchanged.
基金
financially supported by the National Basic Research Program of China (No. 2011CB706604)
National Natural Science Foundation of China (No. 51174251 and 51201105)