期刊文献+

基于二阶矩的雷达信号盲分离

Blind Source Separation of Radar Signals Based on Second Order Statistics
下载PDF
导出
摘要 针对雷达接收机在现代战场复杂电磁环境下接收到的混叠信号,提出了一种基于二阶矩的信号盲源分离方法。在混合信号球化过程中,对于具有加性白噪声的模型,构造了一组新的协方差矩阵,在信噪比不是很高的情况下,使其不会影响分离结果。在协方差矩阵对角化过程中,采用自然梯度的方法,避免分离矩阵更新过程中的求逆问题,提高了算法的实时性。仿真实验证明,在信噪比为-10 d B的条件下,对比Fast ICA算法,所提算法分离精度高,收敛速度快,为进一步的信号识别提供可靠依据。 For mixed signals received by radar in the complex electromagnetic environment of modern bat- tlefield, a blind source separation (BSS) algorithm is proposed which is based on second order statistics (SOS). In processing whiten mixed signals, a set of covariance matrices is constructed with a new method in order to reduce the influence of additive white noise when the signal-to-noise ratio(SNR) is low. In the process of covariance matrix group joint diagonalization,in order to avoid computating the converse matrix, the natura| gradient method is used and the real-time of algorithm is improved. Computer simulation re- sults prove that the separation precision of the proposed algorithm is higher than that of FastICA algorithm, and the convergence speed is also faster than that of FastICA algorithm, which provides reliable basis for further signal recognition.
出处 《电讯技术》 北大核心 2015年第6期594-598,共5页 Telecommunication Engineering
基金 国家自然科学基金资助项目(61102165)~~
关键词 雷达信号 信号识别 盲源分离 二阶矩 联合对角化 自然梯度 radar signal signal recognition blind source separation second order statistics joint diagonal-ization natural gradient
  • 相关文献

参考文献7

  • 1CichockiA,AmariS.自适应盲信号与图像处理[M].吴正国,译.北京:电子工业出版社,2005.
  • 2Aissa-E1-Bey A, Linh-Trnng N,Abed-Meraim K, et al. Underdetermined blind separation of nondiajoint sources in the time-frequency domain [ J]. IEEE Transactions on Signal Processing,2007,55 ( 3 ) :897-907.
  • 3He J A, Liu L Z. Single-channel blind source separation based on cyclic spectrum setimation [ C ]//Proceedings of 2013 6th IEEE International Congress on Image and Sig- nal Processing. Hangzhou : IEEE,2013 : 1525-1529.
  • 4Chien J T, Hsieh H L. Convex Divergence ICA for Blind Source Separation [ J ]. IEEE Transactions on Audio, Speech ,and Language Processing,2012,20( 1 ) :290-301.
  • 5Choi S, Cichocki A, Amari S. Equivariant nonstationary source separation [ J ]. Neural Networks, 2002,15 ( 2 ) : 121-130.
  • 6Wang F S, Zhang L R, Li R, et al. Multidimensional inde- pendent subspace analysis by natural gradient [ J ]. Prze- glad Elektrotchniczny,2012,88(9) :51-54.
  • 7Amari S, Cichocki A, Yang H H. Chapter Blind Signal Separation and Extraction-Neural and Information Theo- retic Approaches [ M ]//Unsupervised Adaptive Filtering. New York : John Wiley, 1999.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部