期刊文献+

三维面部表情识别技术的研究进展

Research Progress of 3D Facial Expression Recognition Technology
下载PDF
导出
摘要 三维采集设备的快速发展,极大推动了三维数据技术的研究。其中,以三维人脸数据为载体的三维面部表情识别研究成果不断涌现。三维面部表情识别可以极大克服二维识别中的姿态和光照变化等方面问题。对三维表情识别技术进行了系统概括,尤其针对三维表情的关键技术,即对表情特征提取、表情编码分类及表情数据库进行了总结分析,并提出了三维表情识别的研究建议。三维面部表情识别技术在识别率上基本满足要求,但实时性上需要进一步优化。相关内容对该领域的研究具有指导意义。 The rapid development of three-dimensional(3D) acquisition devices has greatly promoted the researches based on dimensional data and the achievements in 3D facial expression recognition research is constantly emerging. 3D facial recognition can greatly overcome the gesture and illumination changes and other issues of two-dimensional(2D) recognition. This paper summarizes 3D facial expression recognition technologies with emphasis on analysis of the key technologies of 3 D expression, including expression fea- ture extraction, coding and database. It also gives some research suggestions about 3 D facial expression rec- ognition. 3D facial expression recognition technology can basically meet the requirements in recognition rate, but its real-time performance needs to be further optimized. The research in this paper has reference value for researchers in the field.
出处 《电讯技术》 北大核心 2015年第6期693-703,共11页 Telecommunication Engineering
基金 国家自然科学基金资助项目(61079022) 四川省科技基金项目(2015JY0188) 中国民航飞行学院科研基金项目(Q2013-050 J2012-43)~~
关键词 表情识别 三维人脸 表情特征 表情编码 表情数据库 研究进展 facial expression recognition 3 D face facial expression feature facial expression coding facial expression database research progress
  • 相关文献

参考文献70

  • 1文沁,汪增福.基于三维数据的人脸表情识别[J].计算机仿真,2005,22(7):99-103. 被引量:10
  • 2胡平,曹伟国,李华.一类等距不变量及其在三维表情人脸识别中的应用[J].计算机辅助设计与图形学学报,2010,22(12):2089-2094. 被引量:4
  • 3胡步发,王金伟.双模态及语义知识的三维人脸表情识别方法[J].仪器仪表学报,2013,34(4):873-880. 被引量:18
  • 4Sandbach G, Zafeifiou S, Pantic M, et al. Static and dy- namic 3D facial expression recognition: A comprehensive survey[J]. Image and Vision Computing,2012,30(10) : 683 -697.
  • 5Soyel H, Demirel H. Facial expression recognition using 3D facial feature distances [ C ] //Proceedings of 2007 4th International Conference on Image Analysis and Rec- ognition. Montreal, Canada: Springer Berlin Heidelberg, 2007:831-838.
  • 6Soyel H, Demirel H. 3D facial expression recognition with geometrically localized facial features [ C ] //Proceedings of 23rd International Symposium on Computer and Infor- mation Sciences. Istanbul: IEEE ,2008 : 1-4.
  • 7Tang H, Huang T. 3D facial expression recognition based on properties of line segments connecting facial feature points[ C] //Proceedings of 8th IEEE International Con- ference on Automatic Face & Gesture Recognition. Am- sterdam : IEEE ,2008 : 1-6.
  • 8Li X, Ruan Q, Ming Y. 3D facial expression recognition based on basic geometric features [ C ] //Proceedings of 10th International Conference on Signal Processing. Bei- jing:IEEE,2010 : 1366-1369.
  • 9Tang H, Huang T. 3D facial expression recognition based on automatically selected features [ C ] //Proceedings of 2008 IEEE Computer Society Conference on Computer Vi- sion and Pattern Recognition Workshops. Anchorage, AK: IEEE,2008 : 1-8.
  • 10Soyel H,Demirel H. Optimal feature selection for 3D fa- cial expression recognition with geometrically localized facial features [ C ] //Proceedings of 5th International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Con- trol. Famagusta : IEEE ,2009 : 1-4.

二级参考文献53

  • 1Bowyer K W,Chang K,Flynn P.A survey of approaches and challenges in 3D and multi-modal 3D+2D face recognition[J].Computer Vision and Image Understanding.2006,101(1):1-15.
  • 2Bronstein A M,Bronstein M M,Kimmel R.Three-dimensional face recognition[J].International Journal of Computer Vision.2005,64(1):5-30.
  • 3Bronstein A M,Bronstein M M,Kimmel R.Numerical geometry of non-rigid shapes[M].New York:Springer.2008.
  • 4Chang K I,Bowyer K W,Flynn P J.Multiple nose region matching for 3D face recognition under varying facial expression[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2006,28(10):1695-1700.
  • 5Berretti S,Bimbo A D,Pala P.Description and retrieval of 3D face models using ISO-geodesic stripes[C] //Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval.New York:ACM Press.2006:13-22.
  • 6Samir C,Srivastava A,Daoudi M.Three-dimensional face recognition using shapes of facial curves[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2006,28(11):1858-1863.
  • 7Mpiperis I,Malassiotis S,Strintzis M G.Expression compensation for face recognition using a polar geodesic representation[C] //Proceedings of the 3rd International Symposium on 3D Data Processing,Visualization,and Transmission.Washington D C:IEEE Computer Society Press.2006:224-231.
  • 8Jahanbin S,Choi H,Liu Y,et al.Three dimensional face recognition using ISO-geodesic and ISO-depth curves[C] //Proceedings of the 2nd IEEE International Conference on Biometrics:Theory,Applications and Systems.Piscataway:IEEE Press.2008:1-6.
  • 9Bronstein A M,Bronstein M M,Kimmel R.Expression-invariant 3D face recognition[M] //Lecture Notes in Computer Science.Heidelberg:Springer.2003,2688:62-70.
  • 10Bronstein A M,Bronstein M M,Kimmel R.Isometric embedding of facial surfaces into S 3[M] //Lecture Notes in Computer Science.Heidelberg:Springer.2005,3459:622-631.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部