期刊文献+

改进的RBF神经网络PID算法在电液伺服系统中应用 被引量:16

Improved RBF Neural Network PID Control Strategy Used in Electro-Hydraulic Servo System
下载PDF
导出
摘要 为克服传统PID控制电液伺服系统时存在参数整定不良,动态响应特性欠佳的问题,采用RBF神经网络PID对系统进行控制,并针对控制中存在的问题对控制算法进行改进,仿真和实验研究表明,改进的RBF-PID控制算法较RBFPID和传统PID具有较快的响应速度和较好的鲁棒性。 In order to overcome the problem of presence of parameter setting and poor dynamic response in traditional PID control electro-hydraulic servo system, the RBF neural network PID was used to control system. Aimed at the problems existing in control, the control algorithm was improved. The results of the simulation and experimental research show that the improved RBF-PID control algo- rithm effect is obviously better than the RBF-PID and traditional PID control strategy. It has faster response speed and better robustness.
出处 《机床与液压》 北大核心 2015年第11期63-66,共4页 Machine Tool & Hydraulics
关键词 RBF神经网络PID 电液伺服系统 MATLAB仿真 LAB VIEW测控系统 RBF neural network PID Electro-hydraulic servo system Matlab simulation LabVIEW measurement and controlsystem
  • 相关文献

参考文献4

二级参考文献14

  • 1王益群,刘玉.基于自适应遗传算法的电液弯辊模糊控制系统[J].中国工程机械学报,2006,4(2):159-163. 被引量:7
  • 2廖芳芳,肖建.基于BP神经网络PID参数自整定的研究[J].系统仿真学报,2005,17(7):1711-1713. 被引量:87
  • 3王占林,安敬军,裘丽华,石立.飞行容错控制系统中的关键技术[J].宇航学报,1995,16(1):64-68. 被引量:5
  • 4MAN Zhihong, WU H R, PALANISWAMI M. An adaptive tracking controller using neural networks for a class of nonlinear system[J]. IEEE Transaction on Neural Networks, 1998, 9(5): 947-955.
  • 5PUSKORIUS G V, FELDKAMP L A. Neural control of nonlinear dynamical systems with Kalman filter-trained recurrent networks[J]. IEEE Transaction on Neural Networks, 1994, 5(2): 279-297.
  • 6Hammestrom D.Neural Networks at Work[J].IEEE spetrum,1993,30(6):26-32.
  • 7王少萍.工程可靠性[M].北京:北京航空航天大学出版社,2003.
  • 8舒怀林.PID神经网络及其系统[M].北京:国防工业出版社,2006.
  • 9Martin T. Hagan, Howard B. Demuth. Neural Network Design[M].北京:机械工业出版社,2002.
  • 10Shu Fluailin. PID neural networks for complex systems [ C ]. Proceeding of International Conference on Computational Intelligerrce for Modelling. Control and Automation (CIMCA99) , ISO Press. 1992. 2: 166-171.

共引文献22

同被引文献114

引证文献16

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部