摘要
考虑相关参数,建立惯性振动破碎机振动系统动力学模型,讨论了系统的耦合关系,选择合适的计算方法对方程进行数值求解。结果表明,系统在启动时经过共振区振幅、摆动较大,当激振器转子达到一定转速时,机体水平方向上的振动与摆动慢慢消失,竖直方向上的振动趋于稳定。虽然两个激振器转子驱动力矩、阻尼系数不同,在稳定运动时,两个转子的转速趋于相同,实现激振器同步;两个动颚的阻尼系数、刚度系数不同,在系统稳定工作时,两个动颚的摆动角度趋于相同,实现摆同步。该方法可用以研究某一个参数对系统振动自同步的影响。
The dynamic model of inertial vibrating crusher is established, in which relevant parameters are taken into consideration. The coupling relations of assemblies are discussed, and appropriate calculation method is chose to solve the vibrating differential equation. The results show that the horizontal vibration and swing are large when starting the machine. As two rotors reach a certain angular velocity, the vibrating system can be stable, the horizontal vibration and swing vanish, and the vertical vibration stable. When the system is stable, though two ro- tors' motors and damped coefficient are different, their angular velocities tend to be equal; and two jaws' damped coefficients and stiffness coefficients are different, the swing phases can be different. This method can be used to analyze the effect of a parameter on the system.
出处
《矿冶》
CAS
2015年第3期64-67,共4页
Mining And Metallurgy
基金
国家国际科技合作专项资助(2013DFR70680)
关键词
惯性振动破碎机
振动破碎
振动同步
稳定性
动力学耦合
inertial vibrating crusher
vibrating crushing
vibrating synchronization
stability
dynamics coupling