期刊文献+

单圈图和双圈图的最大无符号拉普拉斯分离度 被引量:2

The maximum signless Laplacian separator of unicyclic and bicyclic graphs
下载PDF
导出
摘要 设G是一个n阶简单图,q_1(G)≥q_2(G)≥…≥q_n(G)是其无符号拉普拉斯特征值.图G的无符号拉普拉斯分离度定义为S_Q(G)=q_1(G)-q_2(G).确定了n阶单圈图和双圈图的最大的无符号拉普拉斯分离度,并分别刻画了相应的极图. Let G be a graph of order n and ql(G) ≥ q2(G) ≥ … ≥ qn(G) be its Q-eigenvalues. The signless Laplacian separator SQ(G) of G is defined as SQ(G) = ql(G) -q2(G). In this paper, we study the maximum signless Laplacian separator of unicyclic and bicyclic graphs and characterize the extremal graphs, respectively.
出处 《运筹学学报》 CSCD 北大核心 2015年第2期99-104,共6页 Operations Research Transactions
基金 国家自然科学基金(No.11101263)
关键词 单圈图 双圈图 无符号拉普拉斯分离度 无符号拉普拉斯矩阵 unicyclic graph, bicyelic graph, signless Laplacian separator, signless Laplacian matrix
  • 相关文献

参考文献6

  • 1Li J X, Guo J M, Wai C S. On the second largest Laplacian eigenvalues of graphs [J]. Linear Algebra and Its Applications, 2013, 438: 2438-2446.
  • 2Kinkar C D. On conjectures involving second largest signless Laplacian eigenvalue of graphs [J]. Linear Algebra and Its Applications, 2010, 432: 3018-3029.
  • 3Heuvel J V D. Hamilton cycles and eigenvalues of graphs [J]. Linear Algebra and Its Applica- tions, 1995, 226-228: 723-730.
  • 4Oliverira C, Lina L, Abreu N, et al. Bounds on the index of the signless Laplacian of a graph [J]. Discrete Applied Mathematics, 2010, 158(2): 355-360.
  • 5Cvetkovid D, Doob D, Sachs M H. Spectra of Graphs-Theory and Application [M]. Heidelberg- Leipzig: Johann Ambrosius Barth Verlag, 1995.
  • 6袁西英.关于双圈图的拉普拉斯谱半径的注记(英文)[J].数学进展,2010,39(6):703-708. 被引量:7

二级参考文献6

  • 1Cvetkovie, D., Doob, M., Sachs, H., Spectra of Graphs-Theory and Application, Johann Ambrosius Bavth Verlag, 1995.
  • 2Crone, R., Merris, R., The Laplacian spectrum of a graph, II, SIAM J. Discrete Math., 1994, 7(2): 221-229.
  • 3He C.X., Shao J.Y., He J.L., On the Laplacian spectral radii of bicyclic graphs, Discrete Mathematics, 2008, 308: 5981-5995.
  • 4Merris, R., Laplacian matrices of graphs: a survey, Linear Algebra Appl., 1994, 197-198: 143-176.
  • 5Merris, R., A note on Laplacian graph eigenvalue, Linear Algebra Appl., 1998, 285: 33-35.
  • 6Zhang X.D., The Laplacian spectral radii of trees with degree sequences, Discrete Mathematics, 2008, 308: 3143-3150.

共引文献6

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部