摘要
给出了中心McCoy环的性质.证明了:环R是中心McCoy环当且仅当R[x]是中心McCoy环当且仅当R[x]/(x^n)是中心McCoy环.设R是右Ore环,Q是它的右商环,如果R是中心McCoy环,那么Q是中心McCoy环。
Central McCoy rings are a generalization of McCoy rings,and its properties were investigated.We showed that a ring R is central McCoy if and only if R[x/ is central McCoy,and if and only if R[x]/(x^n) is central McCoy,where(x^n) is the ideal generated by x^n and n is a positive integer.We get that for a right Ore ring R with Q its classical right quotient ring,if R is central McCoy.then Q is also central McCoy.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第3期67-79,共13页
Journal of East China Normal University(Natural Science)