期刊文献+

一种资源与服务性能关系的建模方法 被引量:1

A Novel Modeling Method for Relationships Between Resources and Service Performance
下载PDF
导出
摘要 获取资源与服务性能的关系模型是在云环境中为服务合理分配虚拟资源的关键.然而,训练数据的规模往往显著影响这种非线性关系模型的准确率.针对现有方法不足,提出了将协同过滤推荐(CFR)和支持向量回归(SVR)相结合的服务性能动态建模方法(CSDM).该方法在服务部署与运行时同时训练两种模型,并选择二者中MAE占优的性能模型预测给定资源状态下的服务性能,从而保证预测精度.同时,CSDM引入择优阈值以降低模型训练代价.实验表明,CSDM在不同规模的训练数据上均有较高的预测准确率,且择优阈值对预测精度和建模效率具有显著影响. The relationship model between resources and service performance is a key to the proper virtual resource allocation for services in cloud environment. However, the accuracy of these non-linear relationship models is usually significantly influenced by the scale of training data. Aiming at the shortcomings of related work, a dynamic service performance modeling method named CSDM, which combines collaborative filtering recommendation and support vector regression, was proposed. In CSDM, for better accuracy, both performance models were trained at service deployment time and runtime, and the one with lower MAE was selected to estimate the performance under given resource status. In addition, a merit-based threshold was introduced to reduce training costs of performance models. The experimental results showed that CSDM had higher accuracy on different scales of training data, and the merit-based threshold had a significant effect on the prediction accuracy as well as the modeling efficiency.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期773-776,共4页 Journal of Northeastern University(Natural Science)
基金 宁夏回族自治区自然科学基金资助项目(NZ13265) 中央高校基本科研业务费专项资金资助项目(N120804001 N120604003) 沈阳市科技基金资助项目(F12-277-1-80) 国家科技支撑计划项目(2014BAI17B00)
关键词 云服务 性能模型 资源状态 协同过滤推荐 支持向量回归 cloud service performance model resource status CFR ( collaborative filtering recommendation) SVR( support vector regression)
  • 相关文献

参考文献9

  • 1Lloyd W,Pallickara S, David O, et al. Service isolation vs. consolidation : implications for iaas cloud application deployment [ C ]//IEEE International Conference on Cloud Engineering. San Francisco ,2013:21 - 30.
  • 2Dejun J,Pierre G,Chi C H. Autonomous resource provisioning for multi-service web applications[ C ]//Proceedings of the 19th International World Wide Web Conference. New York,2010: 471 -480.
  • 3Kundu S, Rangaswami R, Dutta K, et al. Application performance modeling in a virtualized environment [ C ]// IEEE 16th International Symposium on High Performance Computer Architecture. Bangalore,2010 : 1 - 10.
  • 4Rao J, Wei Y D, Gong J Y, et al. QoS guarantees and service differentiation for dynamic cloud applications [ J ]. IEEE Transactions on Network and Service Management, 2013,10 (1) :43 -55.
  • 5Zheng Z B,Ma H, Irwin K, et al. QoS-aware web service recommendation by collaborative filtering [ J ]. IEEE Transactions on Services Computing, 2011,4 ( 2 ) : 140 - 152.
  • 6Drucker H, Burges C, Kanfman L, et al. Support vector regression machines I C ]//Advances in Neural Information Processing System 9. Cambridge, 1997 : 155 - 161.
  • 7王宏宇,糜仲春,梁晓艳,叶跃祥.一种基于支持向量机回归的推荐算法[J].中国科学院研究生院学报,2007,24(6):742-748. 被引量:13
  • 8Lorenzi L, Mercier G, Melgani F. Support vector regression with kernel combination for missing data reconstruction [ J ]. IEEE on Geoscience and Remote Sensing Letters, 2012, 10 (2) :367 -372.
  • 9Zhou Q, Zhai Y J, Han P. Sequential minimal optimization algorithm applied in short-term load forecasting [C ]//IEEE. International Conference on Machine Learning and Cybernetics. Hong Kong ,2(107 :2479 - 2483.

二级参考文献16

  • 1Resnick Varian. Recommender systems. Communications of the ACM, 1997,40(3) : 56 - 58.
  • 2Goldberg, Nichoh, Old, et al. Using collaborative filtering to weave an information tapestry. Communications of the A CM, 1992, 35 (12) : 61 - 70.
  • 3Schafer, Konstan Riedl, E-commerce recommendation applications. Data Mining and Knowledge Discovery, 2001, 5(1-2) : 115 - 153.
  • 4Adomavicins Tuzhilin, Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6) : 734 - 749.
  • 5Breese, Heckerman Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In: Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers, 1998. 43 - 52.
  • 6Vapnik Lemer. Pattern recognition using generalized portrait method. Automation and Remote Control, 1963, 24:774 - 780.
  • 7Vapnik. The nature of statistical learning theory. New York: Springer-Verlag, 1995 .
  • 8SCHOLKOPFSMOLA. Learning with Kernels. MIT Press,2002.
  • 9SMOLASCHOLKOPF. A tutorial on support vector regression. Statistics and Computing, 2004, 14:199 - 222.
  • 10Rojsattarat Soonthomphisaj. Hybrid recommendation: Combining content-based prediction and collaborative filtering. In: Intelligent Data Engineering and Automated Learning. Berlin: Springer Berlin/Heidelberg, 2003. 337 - 344.

共引文献12

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部