期刊文献+

光晶格中玻色——爱因斯坦凝聚体系的定态解

Stationary state of Bose-Einstein condensates confined in optical lattice
下载PDF
导出
摘要 利用变分法研究了一维光晶格势阱中玻色-爱因斯坦凝聚中的定态解。根据高斯型试探波函数和平均场理论求出了波包宽度随时间演化的微分方程和体系的有效势能。根据有效势能是否具有局域最小值判断体系是否具有稳定的定态解,给出了稳定定态解存在时晶格强度与非线性相互作用之间的函数关系,并且利用图示法给出了稳定解存在时的非线性相互作用区间。 We investigate ground state solutions in one-dimensional Bose-Einstein condensate. We derive the second-order differential equation for the evolution of the width and the effective potential for the stability analysis of the system using the Gauss type trial wave function, and give the stable criteria through this effective potential. We also demonstrate the relation between the strength of optical lattice and nonlinearity interaction for stable stationary state.
作者 张耀文
出处 《陇东学院学报》 2015年第3期22-24,共3页 Journal of Longdong University
关键词 玻色-爱因斯坦凝聚 定态解 孤立子 非线性 Bose-Einstein condensates stationary state soliton nonlinearity
  • 相关文献

参考文献6

  • 1O. Morsch, M. Oberthaler. Dynamics of Bose-Einstein condensates in optical lattices [ J ]. Rev. Nod. Phys. , 2006,78:179 -215.
  • 2P. Muruganandam, S. K. Adhikari. Gap solitons in a dipolar Bose-Einstein condensate on a three-dimen- sional optical lattice [ J ]. J. Phys. B, 2011, 44 : 121001.
  • 3V. Galitski, Ian B. Spielman. Spin-orbit coupling in quantum gases [ J ]. Nature ( London ) ,2013,494:49.
  • 4L. Zhou, H. Pu, W. Zhang. Anderson localization of cold atomic gases with effective spin-orbit interaction in a quasiperiodie optical lattice [ J ]. Phys. Rev. A, 2013,87:023625.
  • 5M. J. Edmonds, J. Otterbach, R. G. Unanyan et al.. From Anderson to anomalous localization in cold a- tomic gases with effective spin-orbit coupling [ J ]. New J. Phys. ,2012,14:073056.
  • 6Y. A. Byehkov, E. I. Rashba. Oscillatory effects and the magnetic-susceptibility of carriers in inversion- layers[ J]. J. Phys. C, 1984,17:6039.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部