期刊文献+

多模盲均衡宽带压缩频谱联合特征识别算法

Algorithm of Multimodulus Blind Equalization Broadband Compressed Spectrum Combined Feature Recognition
下载PDF
导出
摘要 传统固定频谱分配方案对频谱利用率较低,无法满足通信业务量的迅速扩大的需求。提出一种多模盲均衡宽带压缩频谱联合特征识别算法,首先构建多模盲均衡频谱感知网络模型,设计能量检测算法和信道融合准则,构建多模盲均衡宽带压缩频谱联合特征识别模型,基于非线性检验准则,构建判决统计模型。由于上层的频谱感知节点所要传送的信息量越大,通过特征识别,提高固定频谱分配方案对频谱的利用率。仿真实验表明,该算法能有效实现多模盲均衡宽带压缩频谱联合特征识别,提高无线频谱信号的感知和特征识别能力,特征识别的准确率提高,提高固定频谱分配方案对频谱的利用率,仿真实验展示了算法的优越性能。 The traditional fixed spectrum allocation scheme on the spectrum utilization rate is low, unable to meet the com?munication traffic of the rapid expansion of demand. Put forward a kind of multi modulus blind equalization broadband com?pressed spectrum combined with feature recognition algorithm, firstly construct the Multimodulus blind equalization spec?trum sensing network model, design of energy detection algorithm and channel fusion criterion, construct multi modulus blind equalization broadband compressed spectrum combined with feature recognition model, nonlinear test based on the criterion of constructing decision statistic model. Because the amount of information spectrum sensing nodes to transmit the upper bigger, increase the fixed spectrum allocation scheme on the spectrum utilization. Simulation results show that the al?gorithm can effectively realize the Multimodulus blind equalization broadband compression characteristic spectrum recogni?tion, enhance the perception and feature recognition ability of wireless spectrum signal, the accuracy rate of feature recogni?tion to improve, it can improve the utilization of fixed spectrum allocation scheme for spectrum ratio, simulation experi?ments demonstrate the superior performance of the algorithm.
出处 《科技通报》 北大核心 2015年第6期157-159,共3页 Bulletin of Science and Technology
关键词 多模盲均衡 频谱感知 联合特征识别 multi modulus blind equalization spectrum sensing combined feature recognition
  • 相关文献

参考文献4

  • 1张俊,朱军,李夏林,项冰冰.基于高效协作感知算法的认知无线电研究[J].计算机应用研究,2012,29(2):730-733. 被引量:3
  • 2Peng QH, Zeng K, Wang J. A Distributed Spectrum Sens.ing Scheme based on Credibility and Evidence Theory inCognitive Radio Context[C]//Proceedings of IEEE 17th In.ternational Symposium on Personal, Indoor and Mobile Ra.dio Communications,2006:1-5.
  • 3Peh E, Liang YC. Optimization for Cooperative Sensing inCognitive Radio Networks[C]//Proceedings of IEEE Wire.less Communications and Networking Conference,2007:27-32.
  • 4Xie YP, Tan XZ, Liu YT. A spectrum allocation algorithmbased on graph theory[J]. Applied Mechanics and Materials,2012,9(4):1065-1070.

二级参考文献10

  • 1CHIANG R I C, ROWE G B,SOWERBY K W. A quantitative analy- sis of spectral occupancy measurements for cognitive radio [ C ]//Proc of VTC Spring IEEE. 2007 : 3016- 3020.
  • 2MITOLA J Ⅲ, MAGUIRE G Q JR. Cognitive radio : making software radios more personal [ J]. IEEE Personal Communications, 1999, 6(4) :13-18.
  • 3MANSOURI N, FATHI M. Simple counting rule for optimal data fusion [ C ]//Proc of IEEE Conference on Control Applications. 2003:1186- 1191.
  • 4DIGHAIM F F,ALOUINI M,SIMON M K. On the energy detection of unknown signals over fading channels[ J]. IEEE Trans on Oommu- nications ,2007,55( 1 ) :21-24.
  • 5BLASCHKE V, JAEKEL H, RENK T,et al. Occupation supporting dynamic spectrum allocation for cognitive radio design [ C ]//Proc of Cognitive Radio Oriented Wireless Networks and Com- munications Conference. 2007:50-57.
  • 6HAMDAOUI B. Adaptive spectrum assessment for opportunistic access in cognitive radio networks [ J~. IEEE Trans on Wireless Commu- nications,2009,8(2) :922-930.
  • 7ZHANG Wei, MALLIK R K, BEN L K. Cooperative spectrum sensing optimization in cognitive radio networks [ C ]//Proc of IEEE Interna- tional Conference on Communications. 2008:3411-3415.
  • 8彭霄,吴素文,朱近康.一种高效利用资源的协作感知方法[J].中国科学技术大学学报,2009,39(10):1039-1044. 被引量:4
  • 9吴素文,彭霄,赵明,朱近康.一种低复杂度的最大化资源效用的最优感知节点数目优化算法[J].中国科学技术大学学报,2009,39(10):1059-1063. 被引量:3
  • 10朱江,黄本雄,王芙蓉,张波.认知无线电网络中的一种新型协作频谱感知方法[J].小型微型计算机系统,2010,31(2):193-197. 被引量:11

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部