期刊文献+

基于高频增强和区域标定的涡轮叶片缺陷定位

Turbine Blade Defects Positioning Based on High Frequency Enhancement and Regional Calibration
下载PDF
导出
摘要 提出一种基于高频增强和区域标定的涡轮叶片缺陷定位检测算法,设计涡轮叶片缺陷定位检测工作原理,采用高频滤波的方法来锐化叶片图像,采用预处理的办法来初步控制过度分割现象,由灰度图像生成梯度图像,构建一个噪声抑制算子,解决过度分割问题,进行了涡轮叶片的缺陷特征模型构建和缺陷信息计算,采用高频增强算法和区域标记的方法,减少由于噪声和纹理细节产生的伪边界,提高缺陷定位性能。仿真实验表明,采用该算法能有效提高涡轮叶片的缺陷定位检测性能,突出损伤边界,较好地抑制噪声。具有较高的工程应用价值。 A turbine blade defects positioning and regional calibration of the detection algorithm is proposed based on en?hanced high frequency, the design principle of turbine blade detection defect positioning method is taken, using high fre?quency filter to sharpen the blade image, using pretreatment methods to preliminary control over segmentation phenomenon generated by the gradient image, gray image, build a noise suppression operator, solution the over segmentation problem of feature model, the defects of turbine blade construction and defect information calculation, using high frequency enhance?ment algorithm and region labeling, due to the pseudo boundary noise and texture details generated defects, improve the po?sitioning performance. Simulation results show that, the algorithm can effectively improve the detection performance of tur?bine blade defects positioning, highlight the damage boundary, and restrain the noise. It has a higher application value in engineering.
作者 杨欧
出处 《科技通报》 北大核心 2015年第6期199-201,共3页 Bulletin of Science and Technology
基金 教育部(深圳大学)光电子器件与系统重点实验室开放基金(GD201307)
关键词 缺陷定位 高频增强 区域标定 涡轮机 defect localization high frequency enhancement region calibration turbine
  • 相关文献

参考文献6

二级参考文献23

  • 1何国辉,甘俊英.PCA类内平均脸法在人脸识别中的应用研究[J].计算机应用研究,2006,23(3):165-166. 被引量:29
  • 2陈伏兵,陈秀宏,张生亮,杨静宇.基于模块2DPCA的人脸识别方法[J].中国图象图形学报,2006,11(4):580-585. 被引量:61
  • 3Enzweiler M,Gavrila D M.Monocular pedestrian detection:survey and experiments[J].Pattern Analysis and MachineIntelligence,IEEE Transactions on,2009,31(12):2179-2195.
  • 4Viola P,Jones M J.Robust real-time face detection[J].International Journal of Computer Vision,2004,57(2):137-154.
  • 5Friedman J,Hastie T,Tibshirani R.Additive logisticregression:A statistical view of boosting[J].Annals ofStatistics,2000,28(2):337-374.
  • 6Viola P,Jones M J,Snow D.Detecting pedestrians usingpatterns of motion and appearance[J].International Journalof Computer Vision,2005,63(2):153-161.
  • 7Dalal N,Triggs B.Histograms of oriented gradients forhuman detection[C] //Computer Vision and PatternRecognition(CVPR),IEEE Computer Society Conference on.2005:886-893.
  • 8Vapnik V,Vladimir N.The Nature of Statistical LearningTheory[M].Berlin,Germany:Springer-Verlag,1995:138-151.
  • 9Qiang Z,Mei-Chen Y,Kwang-Ting C,et al.Fast humandetection using a cascade of histograms of oriented gradients[C] //Computer Vision and Pattern Recognition(CVPR),IEEE Computer Society Conference on.2006:1491-1498.
  • 10Zhe L,Gang H,Davis L S.Multiple instance feature forrobust part-based object detection[C] //Computer Visionand Pattern Recognition(CVPR),IEEE Computer SocietyConference on.2009:405-412.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部