期刊文献+

一类不确定分数阶混沌系统自适应同步与参数辨识

Adaptive synchronization and parameter identification of one class of uncertain fractional-order chaotic system
下载PDF
导出
摘要 针对一个参数不确定的分数阶混沌系统,首先给出不同相平面上的混沌吸引子图,然后基于分数阶系统稳定性理论,设计了一种自适应同步控制方法,不仅能够实现该系统的混沌同步,同时能够完成响应系统的参数辨识,并根据Lyapunov稳定性理论给予严格证明,最后通过数值仿真,验证了该方法的有效性和正确性. In view of one parameter uncertain fractional-order chaotic system, firstly, the chaotic attractors of different phase plane are given. Then, based on the fractional-order stability theory, suitable adaptive synchronization controllers are designed. The method not only achieves the chaos synchronization of the system, but also identifies unknown parameters of the respond system. At last based on the Lyapunov stability theory, strict mathematic proof is given, numerical simulation demonstrates the effectiveness and correctness of the method.
出处 《天津工业大学学报》 CAS 北大核心 2015年第3期85-88,共4页 Journal of Tiangong University
基金 国家自然科学基金资助项目(11302158 11302148) 天津职业技术师范大学研究生创新基金资助项目(YC14-14)
关键词 分数阶混沌系统 混沌同步 参数辨识 自适应同步 控制器 fractional-order chaotic system chaos synchronization parameter identification adaptive synchronization controller
  • 相关文献

参考文献12

  • 1刘崇新.蔡氏对偶混沌电路分析[J].物理学报,2002,51(6):1198-1202. 被引量:36
  • 2LORENZ E N. Deterministic nonperiodic flow[J]. J Atmos Sci,1963,20:130-141.
  • 3SUNDARAPANDIAN V, PEHLIVAN I. Analysis, control, synchronization,and circuit design of a novel chaotic system[J].Mathematical and Computer Modeling,2012,55:1904-1915.
  • 4YUAN L,YANG Q. Parameter identification and synchronizationof fractional-order chaotic systems[J]. Communications inNonlinear Science and Numerical Simulation,2012,17:305 -306.
  • 5董俊,张广军,姚宏,王珏,李明阳,赵静波.异结构超混沌系统的完全同步与反相同步控制[J].空军工程大学学报(自然科学版),2012,13(5):90-94. 被引量:8
  • 6王兴元,孟娟.一类混沌神经网络的观测器广义投影同步设计[J].应用力学学报,2008,25(4):656-659. 被引量:4
  • 7MAINIERIR,REHACEKJ.Projectivesynchronizationin threedimensionalchaotic systems[J]. Physical Review Letters,1999,82(15):3042-3045.
  • 8CAPUTO M. Linear models of dissipation whose q is almost frequencyindependent-II[J]. Geophysical Journal of the RoyalAstronomical Society,1967,13(5):529-539.
  • 9DIETHELM K, FORD N J, FREED A D. A predictor-correctorapproach for the numerical solution of fractional differential equations[J]. Nonlinear Dynamics,2002,29:3-22.
  • 10DIETHELM K, FORD N J. Analysis of fractional differential equations[J]. Math Anal Appl,2002,265:229-248.

二级参考文献40

  • 1王发强,刘崇新.分数阶临界混沌系统及电路实验的研究[J].物理学报,2006,55(8):3922-3927. 被引量:55
  • 2王杰智,陈增强,袁著祉.一个新的混沌系统及其性质研究[J].物理学报,2006,55(8):3956-3963. 被引量:54
  • 3Pecora L M, Carroll T L. Synchronization of chaotic systems[J]. Phys Rev Lett, 1990, 64(8): 821-824.
  • 4Sundar S, Minai A A. Synchronization of randomly multi-plexed chaotic systems with applications to communication[J].Phys Rev Lett, 2000, 85(25); 5456-5459.
  • 5Feki M. An adaptive chaos synchronization scheme applied to secure communication[J]. Chaos, Solitons& Fractals, 2003. 18(1): 141-148.
  • 6Chen S, Lu J. Synchronization of an uncertain unified chaotic system via adaptive control[J]. Chaos, Solitons & Fractals, 2002,14(4): 643-647.
  • 7Huang D. Synchronization-based estimation of all parameters of chaotic systems from time series[J]. Phys Rev E, 2004, 69 (6): 067201.
  • 8Michael G R, Arkady S P, Jurgen K. Phase synchroni-zation of chaotic oscillators[J]. Phys Rev Lett, 1996, 76(11) : 1804- 1807.
  • 9Ho M C, Hung Y C, Chou C H. Phase and anti-phase synchronization of two chaotic systems by using active control[J].Phys Lett A, 2002, 296(1): 43-48.
  • 10Zhang X, Liao X, Li C. Impulsive control, complete and lag synchronization of unified chaotic system with continuous periodic switch[J].Chaos, Solitons & Fractals, 2005, 26(3): 845-854.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部