期刊文献+

基于压缩感知的^(252)Cf源驱动核材料浓度识别技术研究 被引量:1

^(252)Cf-source-driven nuclear material concentration identification based on compressive sensing
下载PDF
导出
摘要 针对252Cf源驱动噪声分析测量法中核材料浓度识别问题,采用压缩感知理论,在K最近邻(KNN)识别算法基础上,研究了一种基于压缩采样的K最近邻(CSKNN)分类识别方法,进而研究并分析了CSKNN方法的识别概率。实验结果表明,CSKNN分类识别方法只需少量的观测值(观测比M/N≥0.1),即可达到分类识别的目的;当信噪比提高时,识别概率将会以更快的速度收敛至100%,且对K值的敏感程度也会随之降低。这样,不仅提高了核军控核查的实时性,而且还有效降低了采样成本,为核材料浓度的在线判读提供了一种新的理论基础和实现方法。 For solving the identification problem in 252 Cf source driven noise analysis method, we used the compressive sens ing theory and the nearest neighbor recognition algorithm, proposed a new classification method named CSKNN method, and then analysed identification probability. The experimental results show that for the classification and identification purposes, the CSKNN identification method only needs a few observations (the ratio between the number of measured values and the fission neutron signal length is no less than 0.1). When the signal to noise ratio increases, the recognition probability will converge faster to 100% and be less sensitive to K. Hence, the CSKNN method is reasonable and feasible, not only because it improves the real time performance of nuclear arms control verification, but also effectively reduces the sampling cost. Most importantly, it pro vides a new theoretical basis and implementation method for the online classification of nuclear material concentration.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2015年第7期172-177,共6页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(61175005) 中央高校基本科研业务费专项资金项目(CDJXS11121145)
关键词 252Cf源噪声分析法 压缩采样 观测比 K最近邻识别算法 识别概率 252 Cf source driven noise analysis compressive sampling observation rate K nearest neighbor recognitionalgorithm classification probability
  • 相关文献

参考文献19

  • 1MihalczoJT,BlakemanED,RaganGE,etal.Dynamicsubcriticalitymeasurementsusingthesup252Cf-source-drivennoiseanalysismethod[J].NuclearScienceandEngineering,1990,104(4):314-338.
  • 2MattinglyJK,ValentineTE,MihalczoJT.NWISmeasurementsforuranium metalannularcastings[R].TheUSDepartmentofEnergyReportNo.Y/LB-15.971,1998.
  • 3MihalczoJT,MullensJA,MattinglyJK,etal.Physicaldescriptionofnuclearmaterialsidentificationsystem (NMIS)signatures[J].NuclearInstrumentsandMethodsinPhysicsResearchSectionA :Accelerators,Spectrometers,DetectorsandAssociatedEquipment,2000,450(2):531-555.
  • 4MattinglyJK.Highorderstatisticalsignaturesfromsource-drivenmeasurementsofsubcriticalfissilesystems[R].TheUSDepartmentofEnergyReportNo.Y/LB-15.966,1998.
  • 5MattinglyJK.March-LeubaJA,MihalczoJT.PassiveNWISmeasurementstoestimateshapeofplutoniumassemblies[R].TheUSDepartmentofEnergyReportNo.Y/LB-15.988,1998.
  • 6QaisarS,BilalR M,IqbalW,etal.Compressivesensing:Fromtheorytoapplications,asurvey[J].JournalofCommunicationandNetworks,2013,15(5):443-456.
  • 7CandèsEJ,WakinMB.Anintroductiontocompressivesampling[J].IEEESignalProcessing Magazine,2008,25(2):21-30.
  • 8冯鹏,刘思远,金晶.利用自相关函数与平稳小波变换的^(252)Cf源驱动核材料质量识别方法[J].强激光与粒子束,2011,23(10):2557-2559. 被引量:5
  • 9冯鹏,刘思远,米德伶.基于Elman神经网络的252Cf源核系统随机中子脉冲信号识别方法[J].强激光与粒子束,2011,23(8):2224-2228. 被引量:2
  • 10杨帆,魏彪,冯鹏,米德伶,任勇.互相关及高阶谱核材料富集度识别方法[J].强激光与粒子束,2013,4(4):1026-1030. 被引量:7

二级参考文献29

  • 1郝樊华,胡广春,刘素萍,龚建,向永春,黄瑞良,师学明,伍钧.钚体源样品γ能谱计算的蒙特卡罗方法[J].物理学报,2005,54(8):3523-3529. 被引量:11
  • 2弟宇鸣,许伟,许鹏,周春林,康月兵,李天柁.一种基于BP神经网络的γ能谱识别方法[J].核电子学与探测技术,2006,26(6):721-722. 被引量:3
  • 3Mihalczo J T, Blackman E D, Ragan G E, et al. Dynamic sub-criticality measurements using the 25zC{-source driven noise analysis method [J]. Nuclear Science Engineering, 1990,94(3) : 336-360.
  • 4Mihalczo J T , Mullens J A , Mattingly J K, et al. Physical description of nuclear materials identification system (NMIS) signatures[J]. Nu clear Instruments and Methods in Physics Research A ,2000,450(2) :531 -555.
  • 5Mattingly J K, Valentine T E, Mihalczo J T. NWIS measurements for uranium metal annular castings[R]. Y/LB 15. 971, 1998.
  • 6Pozzia S A, Segovia J. 252Cf source-correlated transmission measurements and genetic programming for nuclear safeguards[J]. Nucl Instru and Meth in Phys Res A, 2002,491(1/2):326-341.
  • 7Mi Deling, Liu Siyuan, Feng Peng, et. al. The experimental research of nuclear stochastic signal measurement system based on 252Cf neu tron source[C]//2010 International Conference on Computer Application and System Modeling. 2010:525-528.
  • 8Valentine T E. Review of subcritical source-driven noise analysis measurements[R]. ORNL/TM-1999/288, 1999.
  • 9Mattingly J K, March-Leuba J A, Mihalczo J T, et al. Passive NWIS measurements to estimate shape of plutonium assemblies[R]. Y/LB- 15. 988,1998.
  • 10Mattingly J K, Valentine T E, Mihalczo J T, et al. NWIS measurements for uranium metal annular castings[R]. Y/LB-15.971, 1998.

共引文献9

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部