期刊文献+

纤维质原料高浓度酶解技术研究现状及机理分析 被引量:1

Study on Enzymatic Hydrolysis Technology and Mechanism Based on High Solids Cellulose Substrate
下载PDF
导出
摘要 高浓度酶解体系能够获得高糖浓度,显著提高单位设备利用率,减少酒精蒸馏等生产成本,具有较好的应用价值。本文在介绍高固含量底物酶解技术相关研究基础上,主要对高底物浓度水解体系下抑制因素进行了分析,同时对高浓高效酶解反应器的设计及开发进行探讨。高浓度酶解体系伴随水解液中高糖浓度和高的酒精得率,但是酶解转化率随着底物浓度增加而降低,这种抑制效应的出现受多种因素的影响,包括纤维素酶吸附量的下降、产物抑制、搅拌不均使传质传热受限体系粘度增大、水与底物的作用等,可通过改变反应温度、搅拌方式、添加表面活性剂、利用分批补料等酶解技术以改善体系酶解效率,使底物高效转化同时提高产物乙醇浓度,节约燃料乙醇生产成本。 High solids hydrolysis is a direct and convenient technology to produce high concentration sugars, which can dramatically improve the utilization of the unit equipment and reduce purification costs. This review analyzed the inhibitory factors in high solids enzymatic hydrolysis system and discussed the reactors design operated at high solids loading for improving the system efficiency. Enzymatic hydrolysis at high solids loading can obtain high concentration sugars and ethanol, however, the enzymatic conversion efficiencies were decreased with the solids increasing. There were several factors contributed to this inhibitory effect, including the decline adsorption of the cellulase, inhibition from the hydrolysates, high viscosity caused by stirring and mixing difficulty, and lack of available water, etc. Enzymatic efficiency can be improved by altering the reaction temperature and stirring mode, using of surfactant and fed-batch saccharification strategy. The ethanol yield is therefore enhanced the production cost is saved.
出处 《新能源进展》 2015年第3期184-190,共7页 Advances in New and Renewable Energy
基金 国家自然科学基金(21306196 21176237 21211140237) 广州科技项目(2013J4300026)
关键词 纤维质原料 高浓度 酶解 抑制因素 固体效应 酶解反应器 lignocellulose high solids enzymatic hydrolysis inhibited factors solid effects enzymolysis reactor
  • 相关文献

参考文献26

  • 1Xue Y, Jameel H, Phillips R, et al. Split addition ofenzymes in enzymatic hydrolysis at high solidsconcentration to increase sugar concentration forbioethanol production[J]. J Ind Eng Chem, 2012, 18:707-707.
  • 2Jorgensen H, Kristensen J B, Felby C. Enzymaticconversion of lignocellulose into fermentable sugars:challenges and opportunities[J]. Biofuels Bioproducts &Biorefining-Biofpr, 2007, 1(2): 119-134.
  • 3Roche C M, Dibble C J, Knutsen J S, et al. Particleconcentration and yield stress of biomass slurries duringenzymatic hydrolysis at high-solids loadings[J].Biotechnol Bioeng, 2009, 104(2): 290-300.
  • 4Georgieva T I, Hou X R, Hilstorm T, et al. Enzymatichydrolysis and ethanol fermentation of high dry matterwet-exploded wheat straw at low enzyme loading[J].Applid Biochem. Biotech. 2008, 148(1/3): 35-44.
  • 5Tolan J S. Logen’s process for producing ethanol fromcellulosic biomass[J]. Clean Technologies andEnvironmental Policy, 2002, 3: 339-345.
  • 6Hodge D B, Karim M N, Schell D J, et al. Model-basedfed-batch for high-solids enzymatic cellulose hydrolysis[J].Appl Biochem Biotechnol, 2009, 152(1): 88-107.
  • 7Rosgaard L, Andric P, Dam-Johansen K, et al. Effects ofsubstrate loading on enzymatic hydrolysis and viscosityof pretreated barley straw[J]. Appl Biochem Biotechnol,2007, 143(1): 27-40.
  • 8Yang J, Zhang X P, Yong Q A, et al. Three-stageenzymatic hydrolysis of steam-exploded corn stover athigh substrate concentration[J]. Bioresource Technology,2011, 102(1): 4905-4912.
  • 9Ma X X, Yue G J, Yu J L, et al. Enzymatic hydrolysis ofcassava bagasse with high solid loading[J]. J BiobasedMater Bioenergy, 2011, 5: 275-281.
  • 10Chandra R P, Au-Yeung K, Chanis C, et al. The influenceof pretreatment and enzyme loading on the effectivenessof batch and fed-batch hydrolysis of corn stover[J].Biotechnol Prog, 2011, 27: 77-85.

同被引文献8

引证文献1

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部