期刊文献+

TiO_2纳米管限域Fe_2O_3的可见光分解水制氢性能 被引量:1

Fe_2O_3 Confined within Titanium Nanotubes for Photocatalytic Hydrogen Production under Visible Light Illumination
下载PDF
导出
摘要 通过真空-超声辅助的等体积浸渍法制备了TiO2纳米管限域Fe2O3催化剂,考察了其可见光分解水制氢性能。由于Ti O2纳米管的限域效应,导致Fe2O3颗粒减小,分散度提高,能隙增大,光生载流子得到有效分离,提高了其光解水制氢活性。 A novel confinement catalyst, Fe2O3 encapsulated in TiO2 nanotubes (TNTs), was prepared by vacuum-assisted impregnation. Its photocatalytic activity towards hydrogen production under visible light illumination was evaluated. Fe2O3 confined within TNT has the high dispersion, the smaller particle with larger bandgap compared with the catalyst loaded on the outside surface. And it exhibits enhanced photocatalytic activity for hydrogen evolution. It is attributed to the due to the effective separation of the photogenerated carriers as a result of the spatial confinement effect of TiO2 nanotube.
出处 《新能源进展》 2015年第3期239-244,共6页 Advances in New and Renewable Energy
基金 广州市科技计划项目(2013J4300035) 广东省科技计划项目(2013B050800002) 广东省水与大气污染防治重点实验室基金项目(2011A060901002)
关键词 限域效应 光解水制氢 TIO2纳米管 FE2O3 confinement effect water splitting towards hydrogen production TiO2 nanotubes
  • 相关文献

参考文献32

  • 1Dresselhaus M S, Thomas I L. Alternative energytechnologies[J]. Nature, 2001, 414(6861): 332-337.
  • 2Tong H, Ouyang S X, Bi Y P, et al. Nano-photocatalyticmaterials: possibilities and challenges[J]. AdvancedMaterials, 2012, 24(2): 229-251.
  • 3Fujishima A, Honda K. Electrochemical photolysis ofwater at a semiconductor electrode[J]. Nature, 1972,238(5358): 37-38.
  • 4Gordon T R, Cargnello M, Paik T, et al. Nonaqueoussynthesis of TiO2 nanocrystals using TiF4 to engineermorphology, oxygen vacancy concentration, andphotocatalytic activity[J]. Journal of the AmericanChemical Society, 2012, 134(15): 6751-6761.
  • 5Zou Z G, Ye J H, Sayama K, et al. Direct splitting ofwater under visible light irradiation with an oxidesemiconductor photocatalyst[J]. Nature, 2001,414(6864): 625-627.
  • 6Kilic C, Zunger A. N-type doping of oxides byhydrogen[J]. Applied Physical Letters, 2002, 81(1):73-75.
  • 7靳治良,吕功煊.光催化分解水制氢研究进展[J].分子催化,2004,18(4):310-320. 被引量:17
  • 8Sun J W, Zhong D K, Gamelin D R. Compositephotoanodes for photoelectrochemical solar watersplitting[J]. Energy& Environmental Science, 2010, 3(9):1252-1261.
  • 9Murphy A B, Barnes P R F, Randeniya L K, et al,Efficiency of solar water splitting using semiconductorelectrodes[J]. International Journal of Hydrogen Energy,2006, 31(14): 1999-2017.
  • 10Sivula K, Formal F L, Gratzal M. WO3-Fe2O3photoanodes for water splitting: a host scaffold, guestabsorber approach[J]. Chemistry of Materials, 2009,21(13): 2862-2867.

二级参考文献101

  • 1Takata T, Tanaka A, Hara M, et al. Catal.Today[J], 1998, 44: 17-26
  • 2Gopidas K R, Bohorguez M, Kamat P V. J. Phys. Chem.[J], 1990, 94: 6 435-6 440
  • 3Vinodgopal K, Kamat P V. Envior. Sci. Technol.[J], 1995, 29(3): 841-845
  • 4Takata T, Shinohara K, Tanaka A, et al. J. Photochem. Photobiol. A: Chem.[J], 1997, 106: 45-49
  • 5Takata T, Furumi Y, Shinohara K, et al. Chem. Mater.[J], 1997, 9: 1 063-1 064
  • 6Inoue Y, Asai Y, Sato K. J. Chem. Soc. Faraday Trans.[J], 1994, 90: 797- 802
  • 7Kohno M, Kaneko T, Ogura S. J. Chem. Soc., Faraday Trans.[J], 1998, 94: 89-94
  • 8Ohno T, Saito S, Fujihara K, et al. Bull. Chem. Soc. Jpn.[J], 1996, 69: 3 059-3 064
  • 9Sayama K, Arakawa H. J. Chem. Soc. Chem. Commun.[J], 1992, 150- 152
  • 10Khaselev O, Turner J A. Science[J], 1998, 280: 425-427

共引文献16

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部