期刊文献+

双粗糙表面滑动过程不同条件对Z向速度的影响分析 被引量:1

Analysis of the Velocity in Z Direction in Sliding Model of Double Rough Solids
原文传递
导出
摘要 采用W-M函数建立具有分形特征的三维双粗糙面接触模型,在滑动速度、法向载荷及界面剪切强度等各种因素的相互作用下,动态探讨了粗糙体在滑动过程中的摩擦磨损情况。运用有限元方法对滑动过程进行模拟仿真,对Z向速度在各种因素作用下的变化规律进行分析,结果显示滑动速度较小情况下,Z向速度振幅较小;较小法向载荷情况下,Z向速度的振幅较大;界面剪切强度较小情况下,Z向速度的振幅较大。从功率谱看,较小界面剪切强度下摩擦振动变化比较强烈,而相应的所需要能量比较小。将这些结果与相关文献或实验进行比较,得出模拟仿真的合理性,同时通过研究法向载荷、滑动速度、界面剪切强度等工况参数对摩擦振动的影响,以期为摩擦学设计和摩擦材料的制备提供理论参考。 A three-dimensional W-M fractal sliding model of double rough surfaces was established, and considering the factors of interface shear strength influenced the whole sliding process. The velocity in Z direction of sliding processes was analyzed using the finite element analysis take into account adhesion factors in the process of contact. The analysis and simulation identified that the sliding speed is smaller, the amplitude of velocity in Z direction is smaller; the normal load is smaller, the amplitude of velocity in Z direction is larger; the interface shear strength is smaller, the amplitude of velocity in Z direction is larger, and the corresponding energy of overcome the vibration is smaller, but the frequency of vibration is relatively severe. Compared with experimental results or mature friction wear theory, it is concluded that the rationality of the simulation, these consequences will hopefully provide theoretical references to tribology design.
出处 《机械设计与研究》 CSCD 北大核心 2015年第3期87-90,共4页 Machine Design And Research
基金 国家自然科学基金资助项目(51175085) 福建省中青年教师教育科研项目(JA14329) 宁德市科技项目(20140203)
关键词 双粗糙分形表面 滑动接触模型 损伤失效 z向速度 界面剪切强度 two fractal rough surfaces sliding model material failure the velocity in Z direction interface shear strength
  • 相关文献

参考文献16

  • 1李春波.摩擦振动(一)概论[J].润滑与密封,1983,(5):47-54.
  • 2宋期,崔周平,张人佶.GCr15钢-CVDCr_7C_3镀层摩擦副摩擦振动的研究[J].固体润滑,1991,11(2):103-113. 被引量:1
  • 3宋期,崔周平,张人佶.真空中GCr15钢球/CVD Cr_7C_3镀层钢盘摩擦副摩擦振动的研究[J].摩擦学学报,1992,12(1):35-44. 被引量:3
  • 4G X Chen, Z R Zhou. Experimental observation of the initiation process of friction-induced vibration under reciprocating sliding conditions. Wear, 2005, 259(1 -6):277 -281.
  • 5J Yang, K Komvopoulos. A mechanics approach to static friction of elastic-plastic fractal surfaces. ASME Journal of Tribalogy, 2005, 127 (2) : 315 -324.
  • 6Prasanta S, Niloy G. Finite element contact analysis of fractal sur- faces[J]. Journal of Physics D: Applied Physics,2007,40(14) : 4245 - 4252.
  • 7Yan W, Komvopoulos K. Contact analysis of elastic-plastic fractal surfaces [ J ]. Joumal of Applied Physics, 1998, 84 ( 7 ) : 3617 - 3624.
  • 8Prasanta S, Niloy G. Finite element contact analysis of fractal sur- faces[J]. Journal of Physics D: Applied Physics,2007,40(14) : 4245- 4252.
  • 9Yan W, Komvopoulos K. Contact analysis of elastic-plastic fractal surfaces [ J ]. Journal of Applied Physics, 1998, 84 ( 7 ) : 3617 - 3624.
  • 10J M Huang, C H Gao. Journal of mechanical engineering,2011,47 : 87 - 92.

二级参考文献49

共引文献27

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部