期刊文献+

基于RF和KNN的三种肝炎分类模型的建立 被引量:1

The establishment of three kinds of hepatitis of classification model based on the RF and KNN
下载PDF
导出
摘要 目的建立甲、乙、丙三种肝炎的计算机分类模型。方法以病毒学检查为指标确定三种肝炎病例,以患者和健康体检者血常规检查指标、生化检查指标为原始数据建立数据库,其中甲肝病例186例,乙肝病例835例,丙肝病例129例,健康志愿者438人。分别采用随机森林和K-最邻近法建立甲、乙、丙三种肝炎的分类模型。结果随机森林筛选出了9个(ALT、GGT、AST、ALB、BUN/Crea、CPT、MO%、TBIL、Cl-1)相对重要的变量,该模型内部预测准确率、测试集的预测准确率分别是92.59%、91.56%,KNN模型内部预测准确率、训练集、测试集的预测准确率分别是93.95%、96.89%、90.23%。结论所建的分类模型对三种肝炎患者和健康人有较好的识别能力。 Objective To establish the computer classification model of three kinds of hepatitis A, B and C. Methods Three hepatitis cases were determined by using virology examination. Database was set up using blood routine examination and biochemical in- dexes of patients and healthy people as the original data. There were 186 cases of hepatitis A,835 cases of hepatitis B, 129 cases of hepa- titis C and 438 healthy volunteers. Three kinds of hepatitis A, B, C of classification model were respectively established by using random forest method and K - nearest neighbor method. Results Nine of relative important variables (ALT,GGT,AST,ALB,BUN/Crea,CPT, MO% , TBIL, C1 - 1 ) were screened out using random forest. The internal prediction accuracy of the model was 92.59%. The forecast ac- curacy of the test set was 91.56%. The internal prediction accuracy of KNN model was 93.95%. The forecast accuracy of the training set was 96.89% and the forecast accuracy of the test set was 90.23%. Conclusion The establishment of the classification model has better recognition ability on patients of three kinds of hepatitis and healthy people.
出处 《宁夏医学杂志》 CAS 2015年第6期496-498,I0001,共4页 Ningxia Medical Journal
基金 宁夏科技攻关资助项目(KGX131016)
关键词 随机森林 K-最邻近 甲型肝炎 乙型肝炎 丙型肝炎 分类模型 Random forest K - nearest neighbor Hepatitis A Hepatitis B Hepatitis C Classification model
  • 相关文献

参考文献4

  • 1Verikas A, Gelzinis a, Bacauskiene M. Mining data with random for- ests:a survey and results of new tests [ J 1. Pattern Recognition, 2011,44 (2) :330 - 349.
  • 2武晓岩,李康.基因表达数据判别分析的随机森林方法[J].中国卫生统计,2006,23(6):491-494. 被引量:21
  • 3Amendolia SR, Cossu G, Ganadu ML, et al. A comparative study of K - nearest neighbour, support vector machine and multi - layer perceptron for thalassemia screening[ J ]. Chemometrics and Intelli- gent Laboratory Systems,2003,69 (1/2) :13 -20.
  • 4Krmer K, Ebel S. Application of NIR reflectance spectroscopy far the identification of pharmaceutical excipients[ J]. Analytica Chimi- ca Acta,2000,420(2) :155 - 161.

二级参考文献4

  • 1Marko R.Improving Random Forests.Machine Learning.ECML Proceedings,Springer,Berlin,2004.
  • 2Ramón D,Sara Alvarez DA.Gene selection and classification of microarray data using random Forest.BMC Bioinformatics,2006,http://www.biomedcentral.com/1471-2105/7/3.
  • 3Liaw A,Wiener M.Classification and regression by randomForest.Rnews,2002,2:18-22.
  • 4Leo B.Random Forests.Statistics Department University of California Berkeley,CA 94720,January 2001.

共引文献20

同被引文献17

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部