期刊文献+

具有稳定分布噪声的ARMA模型的贝叶斯分析及应用 被引量:5

Bayesian Inference for ARMA Model with Stable Innovations,and Applications
原文传递
导出
摘要 稳定分布是正态分布的推广,能够描述诸如方差无限、厚尾、有偏等非正态特征.但该类分布由于通常没有显式的密度函数,这给建模、分析带来了困难.本文采用数据扩充法、切片抽样法以及MCMC方法,给出了具有稳定分布噪声的ARMA模型更为简洁、有效的贝叶斯建模方法.通过对两个模型的模拟分析,说明了稳定分布的一些统计性质和文中建模方法的有效性.将模型应用于一个实际数据集,演示了该类模型的建模方法并展示了该类模型的一些优势. Stable distributions are generalizations of the normal distribution, which can allow for infinite variance, skewness and arbitrarily heavier tails than the normal distribu- tion. In general there exists no closed form for the probability density function of a stable distribution, which increases the complexity of modeling and analyzing. By using data aug- mentation algorithm, slice sampling and MCMC methods, a simple and efficient Bayesian modeling method for autoregressive moving average (ARMA) models with stable innova- tions is proposed. We illustrate the modeling method and some interesting properties of the models by using data simulated from two time series models with stable innovations. The model is applied to a real financial data set and compared with other competing models, and appears to capture features of the data set better than other competing models.
出处 《应用数学学报》 CSCD 北大核心 2015年第3期466-476,共11页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11271136) 基本科研业务费(JB150707)资助项目
关键词 稳定分布 切片抽样法 MCMC ARMA模型 厚尾 stable distribution slice sampling MCMC ARMA model heavy tail
  • 相关文献

参考文献13

  • 1Fama E F. The behaviour of stock market prices. Journal of Business, 1965, 38: 35-105.
  • 2Buckle D J. Bayesian inference for stable distributions. Journal of the American Statistical Association, 1995, 90(430): 605-613.
  • 3Qiou Z, Ravishanker N. Bayesian inference for time series with stable distributions. Journal of Time Series Analysis, 1966, 19(2): 235-249.
  • 4Hastings W K. Monte carlo sampling methods using Markov chains, and their applications. Biometrika, 1970, 57: 97-109.
  • 5Neal R M. Slice sampling. The Annals of Statistics, 2003, 31(3): 705-741.
  • 6Nolan John P. Stable distributions models for heavy tailed data. Working paper, 2004.
  • 7William M Bolstad. Understanding computational Bayesian Statistics. Hoboken, New Jersey: John Wiley and Sons, 2010.
  • 8Mao S S, Wang J L, Pu X L. Advanced Mathematical Statistics. Beijing: China Higher Education Press; Heidelberg, Berlin: Springer-Verlag, 2000 (in Chinese).
  • 9Marco Lombardi. Simulation-based Estimation Methods for α-stable Distributions and Progresses. PhD thesis, 2004.
  • 10Wong C S, Li W K. On a logistic mixture autoregressive model. Biometrika, 2001, 88: 833-846.

同被引文献24

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部