期刊文献+

基于混合编码遗传算法的证据网节点可靠性评估 被引量:2

Reliability evaluating of evidential network nodes with hybrid-code genetic algorithm
下载PDF
导出
摘要 证据网是一种基于D-S(Demspter-Shafer)理论层次化推广的推理模型,和D-S理论一样,当证据网中传感器节点不可靠时需要进行折扣(可靠性)处理。由于证据网是一种多层次的节点信息融合,折扣在不同融合层次传感器上,影响不同层次上的冲突,所以折扣的设置需全局考虑冲突情况。已有的可靠性评估方法是D-S理论中的评估,这些方法并不能保证在融合中全局的冲突最小,针对这一问题提出一种以减小全局冲突为目标使用混合编码遗传算法进行可靠性评估的方法。在仿真实验中通过与已有的可靠性评估方法进行比较,证明了该方法更能减小全局冲突,获得更好的结果。 Evidential Network is a reasoning model based on extending the Demspter-Shafer(D-S)theory, when the sensors node are unreliable,discounts(reliability)should be set at the nodes as in the D-S theory.Be-cause the evidential network fuses the multiple echelons of information of nodes,the discounts of sensors are at the different fusion levels and take effect at the different fusion levels,the whole conflict should be taken into consideration when the discounts are set up.The existing ways of evaluating the reliability are used in the D-S theory,and they cannot ensure the minimum of the whole conflict when taking the fusing in the evidential net-work.In order to resolve the problem,the hybrid-code genetic algorithm is proposed to evaluate the reliability of evidential network nodes,with the aim of reducing the whole conflict.Compared with some other algorithms,the re-sults prove that the proposed algorithm takes some advantages in reducing the conflict and finding a better result.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第7期1697-1702,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61309001 61379057) 高等学校博士学科点专项科研基金(优先发展领域)(20120162130008)资助课题
关键词 证据网 混合编码遗传算法 证据折扣 全局冲突 evidential network hybrid-code genetic algorithm evidence discount whole situation conflict
  • 相关文献

参考文献20

  • 1Cooke R M. Experts in uncertainty[M]. New York: Oxford University Press, 1991.
  • 2David M, Benjamin Q. General correction mechanisms for weak- ening or reinforcing belieunctions[C]//Proc. of the 9th Inter- national Conference on Information Fusion, 2006 : 1 - 7.
  • 3Galina L R, Vincent N. Reliability in information fusion: litera- ture survey[C]//Proc, of the 7th International Conference on Information Fusion, 2004 : 1158 - 1165.
  • 4Guo H W, Shi W K, Deng Y. Evaluating sensor reliability in classification problems based on evidence theory [J]. IEEE Trans. on Systems, Man and Cybernetics-Part B : Cybernetics, 2006, 36(5): 970-981.
  • 5Jousselme A L, Grenier D, Bosse E. A new distance between two bodies of evidence[J]. InJbrrnation Fusion ,2001,2(2) :91 - 101.
  • 6付耀文,贾宇平,杨威,庄钊文.传感器动态可靠性评估与证据折扣[J].系统工程与电子技术,2012,34(1):212-216. 被引量:9
  • 7David M, Benjamin Q, Thierry D. Refined modeling of sensor reliability in the belief function framework using contextual dis- counting[J]. Information Fusion, 2008,9(2) : 246 - 258.
  • 8Xu H, Smets P. Reasoning in evidential networks with condi- tional belief functions[J]. International Journal of Approxi mate Reasoning, 1996, 14(2/3): 155-185.
  • 9Attoh-Okine N O. Aggregating evidence in pavement manage ment decision-making using belief functions and qualitative Markov tree[J]. IEEE Trans. on Systems, Man and Cybernet- ics : Part C-Applications and Reviews ,2002,32(3) :243 - 251.
  • 10Srivastava R P, Lin L. Applications of belief functions in busi- ness decisions: a review[J]. Information Systems Frontiers, 2003, 5(4): 359-378.

二级参考文献53

  • 1郭华伟,施文康,刘清坤,邓勇.一种新的证据组合规则[J].上海交通大学学报,2006,40(11):1895-1900. 被引量:57
  • 2雍少为.信息融合的基本理论及其在自动目标识别中的应用.长沙:国防科技大学,1997.
  • 3Sharer G. A mathematical theory of evidence. Princeton, Princeton Univ. Press, 1976.
  • 4P. Smets, R. Kennes, The transferable belief model, Artificial Intelligence, Vol. 66 : 191-234, Apr. 1994.
  • 5Philippe SMETS. The combination of evidence in the transferable belief modal. IEEE Trans. On Patten Analysis and Machine Intelligence, 1990,12(5 ) :447-458.
  • 6Otman Basir, Fakhri Karray, Hongwei Zhu. Connectionist- Based Dempster-Shafer Evidential Reasoning for Data Fusion. IEEE Trans. Neural Networks, 2005,16 ( 6 ) : 1513- 1530.
  • 7N. Milisavljevic, I. Bloch. Sensor fusion in anti-personnel mine detection using a two-level belief functions model. IEEE Trans. System, Man and Cybernetics, 2003.33 ( 2 ) : 269-283.
  • 8Francois Delmote, Philippe Smets. Target Identification Based on the Transferable Belief Model Interpretation of Dempster-Shafer Model. IEEE Trans. Systems, Man, and Cybernetics, 2004.34 (4) : 457-471.
  • 9Galina L. Rogova, Vincent Nimier. Reliability in information fusion: Literature survey. In Proc. 7^th Int. Conf. Inf. Fusion, Stockholm, Sweden, 2004, pp. 1158-1165.
  • 10Z. Elouedi, K. Mellouli, P. Smets. The evaluation of sensots' reliability and their tuning for multi-sensor data fusion within the transferable belief model. In Prec. 6^th Eur. Conf. Symb. Quant. Approaches Reason. Uncertainty, Toulouse, France, Sep. 2001, pp. 350-361.

共引文献40

同被引文献22

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部