期刊文献+

针对有向图的局部扩展的重叠社区发现算法 被引量:7

Overlapping Community Detection from Local Extension in Directed Graphs
下载PDF
导出
摘要 当前社区发现算法主要是针对无向图研究社区结构,但在实际复杂网络中,链接关系时常表现出非对称性或方向性,比如Twitter的用户关注关系,文献网络的引用关系,网页之间的超链接关系等应用网络。因此,本文依据信息在复杂网络中的传播规律和流动方向性,提出了k-Path共社区邻近相似性概念及计算方法,用于衡量结点在同一社区的相似性程度,并给出了把有向图转换为带方向权值的无向图的方法。基于带权无向图提出了一种从局部扩展来探测社区的重叠社区发现算法(Local and wave-like extension algorithm of detecting overlapping community,LWS-OCD)。在真实数据集上的实验表明,共社区邻近相似性概念实现了有向到无向的合理转换,而且提高了社区结点的聚集效果,LWSOCD算法能够有效地发现带权无向图中的重叠社区。 Most of the previous research on community detection are mainly based on the undirected graph structures. However, in actual complex networks, the links relation usually shows the asymmetric char- acteristic or directionality, such as citation network of scientific papers, the one-way follow relationship on Twitter, and hyperlinks between web pages. Therefore, based on the propagation of information and the direction of information transmission, a k-Path conception and calculation method for measuring the similarity of co-community neighboring is presented to weigh possibility of nodes in the same community. Furthermore, the method of transferring directed graphs into undirected graphs with similarity of weight is presented. Then the local extension algorithm of detecting overlapping community based on weighted undirected graphs is proposed. Several experiments on the real data sets are conducted and analyzed. Ex- perimental results demonstrate that the k-Path conception can achieve the reasonable conversion for di- rected graph and improve the effectiveness of the community gathering nodes. Finally, the results show that the algorithm can detect the overlapping community effectively.
出处 《数据采集与处理》 CSCD 北大核心 2015年第3期683-693,共11页 Journal of Data Acquisition and Processing
基金 中国人民大学科学研究基金(中央高校基本科研业务费专项资金)(10XNI029)资助项目 国家自然科学基金(70871001 71271211)资助项目 北京市自然科学基金(4132067)资助项目
关键词 有向图 社区发现 共社区邻近相似性 带权无向图 重叠社区 directed graph community detection co-community neighboring similarity weighted undi-rected graph overlapping community
  • 相关文献

参考文献16

  • 1Easley D, Kleinberg J. Networks, crowds, and markets: Reasoning about a highly connected world [M]. Cambridge: Cam- bridge University Press, 2010.
  • 2周耀明,李弼程.一种自适应网络舆情演化建模方法[J].数据采集与处理,2013,28(1):69-76. 被引量:26
  • 3TangLei,Liuhuan.社会计算:社区发现和社会化媒体挖掘[M].文益民.闭应洲,译.北京:机械工业出版社,2012.
  • 4Fortunato S. Community detection in graphs [J]. Physics Reports, 2010,486(3):75-174.
  • 5程学旗,沈华伟.复杂网络的社区结构[J].复杂系统与复杂性科学,2011,8(1):57-70. 被引量:69
  • 6Newman M E J, Girvan M. Finding and evaluating community structure in networks [J]. Physical review E, 2004, 69(2), 026113.
  • 7Newman M E J. Detecting community structure in networks [J], Complex Systems, 2004, 38(2) :321-330,.
  • 8Xie J, Kelley S, Szymanski B. Overlapping community detection [J]. ACM Computing Surveys, 2013,45(4).43:1-35.
  • 9Palla G, Derenyi I, Farkas I, et al. Uncovering the overlapping community structure of complex networks in nature and soci- ety[J]. Nature, 2005, 435(7043) :814-818.
  • 10Gregory S. An algorithm to find overlapping community structure in networks EC: //Proceedings of Knowledge Discovery in Databases:PKDD 2007, 11 th European Conference on Principles and Practice of.Knowledge Discovery in Databases. Warsaw, Poland : Lecture Notes in Computer Science, 2007 : 91 102.

二级参考文献101

  • 1G. Agarwal,D. Kempe.Modularity-maximizing graph communities via mathematical programming[J]. The European Physical Journal B . 2008 (3)
  • 2Ulrike Luxburg.A tutorial on spectral clustering[J]. Statistics and Computing . 2007 (4)
  • 3David Lusseau,Karsten Schneider,Oliver J. Boisseau,Patti Haase,Elisabeth Slooten,Steve M. Dawson.The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations[J]. Behavioral Ecology and Sociobiology . 2003 (4)
  • 4Cheng X Q,Shen H W.Uncovering the community structure associated with the diffusion dynamics on networks. JStat Mech . 2010
  • 5Almendral J A,Leyva I,Li D,et al.Dynamics of overlapping structures in modular networks. Physical Review E Statistical Nonlinear and Soft Matter Physics . 2010
  • 6Rosvall M,Bergstrom C T.An information-theoretic framework for resolving community structure in complex network-s. Proceedings of the National Academy of Sciences of the United States of America . 2007
  • 7Bagrow J P.Evaluating local community methods in networks. J Stat Mech . 2008
  • 8Carmi S,Krapivsky P L,Ben-Avraham D.Partition of networks into basins of attraction. Physical Review E Statistical Nonlinear and Soft Matter Physics . 2008
  • 9Leskovec J,Lang K J,Dasgupta A,et al.Statistical properties of community structure in large social and informationnetworks. http://portal.acm.org/citation.cfm?id=1367591 . 2010
  • 10Shen H W,Cheng X Q,Cai K,et al.Detect overlapping and hierarchical community structure in networks. Physical Review A Atomic Molecular and Optical Physics . 2009

共引文献93

同被引文献26

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部