期刊文献+

长骨裂纹宽度和角度对低阶超声导波的影响 被引量:6

Impact of long bone fracture width and angle on low-order ultrasonic guided waves
下载PDF
导出
摘要 超声导波检测长骨骨折和监测骨折愈合已成为一种极具前景的课题,但高频厚积下导波多模式混叠带来的模式识别和分离问题一直是一个难点。为避免上述问题,在低频下仅激励两个低阶兰姆波SO和AO模式,采用二维时域有限差分(2DFDTD)法定量分析裂纹宽度和骨折角度对SO和AO幅度的影响。结果表明,SO与AO模式的幅度均随裂纹宽度的增加而下降;AO的幅度随骨折角度增大而上升,SO幅度随骨折角度增大先下降后上升,转折点约为45°。SO与AO的幅度比值在不同骨折角度下均能较好地表征裂纹宽度的变化,可为横断型和斜切型长骨骨折状况的超声评价及骨折愈合监测提供依据。 Using ultrasonic guided wave to assess long bone fractures and fracture healing has become a promising diagnostic issue. But the multiple guided wave modes alias has always been a big challenge. To solve this problem, a low frequency signal is used in the two-dimension finite-difference time-domain (2D-FDTD) simulation and only SO and A0 modes are excited. The amplitudes of guided waves SO and A0 in long bone with different fracture width and angle are analyzed. The results show that both SO and A0 amplitudes decrease with the increasing of fracture width in different oblique fracture angles. A0 amplitude increases with the increasing of oblique fracture angle while SO amplitude decreases with the increasing of fracture angle then increases with the further increasing of fracture angle with a turning point at around 45°. The ratio parameter between the amplitude of SO and A0 can evaluate the change of fracture width in different fracture angle cases. Thus, it can provide basis for evaluating fractured long bone with vertical and oblique angle and monitoring the healing of fractured long bone.
出处 《声学学报》 EI CSCD 北大核心 2015年第4期555-562,共8页 Acta Acustica
基金 国家自然科学基金(11174060 11327405 11304043) 上海市科技支撑计划(13441901900) 教育部博士点基金(20110071130004 20130071110020) 中国博士后基金(2012M520826)资助
关键词 裂纹宽度 超声导波 长骨骨折 骨折愈合 横断型 分离问题 模式识别 混叠 皮质骨 超声评价 Bone Finite difference time domain method Guided electromagnetic wave propagation Ultrasonic waves
  • 相关文献

参考文献8

二级参考文献89

  • 1宁伟,王耀俊.三层复合结构中的漏Lamb波:理论与实验[J].声学学报,1996,21(5):767-772. 被引量:7
  • 2他得安 王威琪 汪源源.相位谱法研究长骨中超声导波的频散[J].仪器仪表学报,2007,28(8):139-142.
  • 3Laugier P, Wear K A, Waters K R. Introduction to the special issue on diagnostic and therapeutic applications of ultrasound in bone-part I. IEEE Trans. on UFFC, 2008; 55(6): 1177--1178.
  • 4Laugier P, Wear K A, Waters K R. Introduction to the special issue on diagnostic and therapeutic applications of ultrasound in bone-part II. IEEE Trans. on UFFC, 2008; 55(7): 1415--1416.
  • 5Moilanen P. Ultrasonic guided waves in bone. IEEE Trans. on UFFC, 2008; 55(6): 1277--1286.
  • 6TA De'an, HUANG Kai, WANG Weiqi et al. Identification and analysis of multimode guided waves in tibia cortical bone. Ultrasonics, 2006; 44(51): e279--284.
  • 7Protopappas V C, Fotiadis D I, Malizos K N. Guided ultrasound wave propagation in intact and healing long bones. Ultrasound in Med.& Biol., 2006; 32(5): 693--708.
  • 8Moilanen P, Nicholson P H F, Kilappa V, Cheng S, Timonen J. Assessment of the cortical bone thickness using ultrasonic guided waves: Modelling and in vitro study. Ultrasound in Med. &Biol., 2007; 33(2): 254--262.
  • 9Moilanen P, Nicholson P H F, Kilappa V et al. Measuring guided waves in long bones- Modeling and experiments in free and immersed plates. Ultrasound in Med.& Biol., 2006; 32(5): 709--719.
  • 10Moilanen P, Kilappa V, Nicholson P H F. Thickness sensitivity of ultrasound velocity in long bone phantoms. Ultrasound in Med. & Biol., 2004; 30(11): 1517--1521.

共引文献58

同被引文献19

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部