期刊文献+

大肠杆菌温敏耐热系统的构建与应用

Construction and application of temperature sensitive thermotolerant system in Escherichia coli
下载PDF
导出
摘要 发酵过程中热胁迫不仅影响微生物的生长和生产,还因冷却控温增加了生产成本。通过人工设计合成的温敏型RNA开关调控来源于腾冲嗜热菌(Thermoanaerobacter tengcongensis MB4)的热激蛋白Dna K的表达,该温敏型耐热系统显著提高了大肠杆菌的耐热性,同时还减少了大肠杆菌在37℃过表达热激蛋白的代谢负荷。将该系统应用于产赖氨酸大肠杆菌的高温发酵,不仅强化了其在40℃下的生长能力,而且显著提高了其在高温下的生产能力,赖氨酸产量比对照组提高了2.95倍。温敏型耐热系统的应用为人工耐热生物系统的构建提供了新方法。 The heat stress produced in fermentation process can not only affect the growth and reproduction of microorganisms, but also increases production cost from cooling and temperature control. The improvement of strain thermotolerance is highly desire for fermentation industry, which could significantly go up productivity and reduce production cost. So in this study, an artificial design and synthesis RNA switch with temperature sensitivity is employed to regulate and control the heat shock protein Dnak from Thermoanaerobacter tengcongensis MB4, which leads to the thermotolerance improvement of Escherichia coli. This improvement not only alleviated the burden of overexpressing heat shock protein in Escherichia coli at 37℃, but also enhanced its productivity at high temperature. The results of application test show that at 40℃ the output of lysine produced by E. coli increases by 2.95 folds, when compared with control group. This success could be twilight for the development of new method to prepare thermotalerance microorganisms.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第7期2613-2619,共7页 CIESC Journal
基金 国家重点基础研究发展计划项目(2011CBA00800) 国家自然科学基金项目(21376028) 国家杰出青年科学基金项目(21425624)~~
关键词 生物技术 合成生物学 发酵 耐热性 RNA温敏开关 热激蛋白 赖氨酸 biotechnology synthetic biology fermentation thermotolerance temperature sensitive RNA switch heat shock protein lysine
  • 相关文献

参考文献22

  • 1Walker Graeme M,van Dijck P.Physiological and molecular responses of yeasts to the environment//Yeasts in Food and Beverages [M].Berlin:Springer,2006:111-152.
  • 2Rivas B,Moldes A B,Domínguez J M,Parajó J C.Lactic acid production from corn cobs by simultaneous saccharification and fermentation:a mathematical interpretation [J].Enzyme and Microbial Technology,2004,34(7):627-634.
  • 3Abdel-Banat B M,Hoshida H,Ano A,Nonklang S,Akada R.High-temperature fermentation:how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast [J].Applied Microbiology Biotechnology,2010,85(4):861-867.
  • 4Zeikus J.Thermophilic bacteria:ecology,physiology and technology [J].Enzyme and Microbial Technology,1979,1(4):243-252.
  • 5Christ D,Chin J W.Engineering Escherichia coli heat-resistance by synthetic gene amplification [J].Protein Engineering Design Selection,2008,21(2):121-125.
  • 6Liu Y,Zhang G,Sun H,Sun X,Jiang N,Rasool A,Lin Z,Li C.Enhanced pathway efficiency of Saccharomyces cerevisiae by introducing thermo-tolerant devices [J].Bioresource Technology,2014,170:38-44.
  • 7Luan G,Dong H,Zhang T,Lin Z,Zhang Y,Li Y,Cai Z.Engineering cellular robustness of microbes by introducing the GroESL chaperonins from extremophilic bacteria [J].Journal of Biotechnology,2014,178:38-40.
  • 8Ezemaduka A N,Yu J,Shi X,Zhang K,Yin C C,Fu X,Chang Z.A small heat shock protein enables Escherichia coli to grow at a lethal temperature of 50℃ conceivably by maintaining cell envelope integrity [J].Journal of Biotechnology,2014,196(11):2004-2011.
  • 9Shenhar Y,Rasouly A,Biran D,Eliora Z Ron.Adaptation of Escherichi coli to elevated temperatures involves a change in stability of heat shock gene transcripts [J].Environmental Microbiology,2009,11(12):2989-2997.
  • 10Wang Y H,Wei K Y,Smolke C D.Synthetic biology:advancing the design of diverse genetic systems [J].Annual Reviews Chemical Biomolecular Engineering,2013,4:69-102.

二级参考文献2

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部