期刊文献+

旋转带肋回转通道换热实验研究 被引量:4

Experimental Investigation of Heat Transfer for Rotating Internal Cooling Channels with Rib Turbulators
下载PDF
导出
摘要 为深入掌握高压涡轮叶片带肋回转通道在旋转状态下的换热分布,建立了旋转内通道实验系统,利用瞬态液晶测量方法研究了动叶回转内通道模型的换热机理,比较了三维数值模拟和实验的换热结果。通道入口雷诺数为5000~17000,旋转数为0~0.09,旋转半径与水力直径之比为46.4。结果表明:不同雷诺数下回转内通道的局部换热系数分布相似,局部、平均换热系数均随雷诺数增加而增大;沿程展向平均换热系数呈多波峰状分布,肋的扰动强化换热沿流向逐渐减弱;径向出流通道的努赛尔数随旋转数增加明显增大,径向入流通道的努赛尔数随旋转数的增加略有减小;哥氏力使转弯下游通道的局部换热系数改变,肋间的高换热区域由前肋的背风面附近向两肋之间偏移。 To deeply understand the heat transfer distribution in rotating ribbed serpentine cooling channel with high pressure turbine blade, the internal cooling channel experimental system has been set up. The heat transfer theory in cooling channel of rotor blade was researched by using transient liquid crystal measurement. The heat transfer results between experimental date and numerical simulation were compared. The range of Reynold numbers on channel inlet and Rotation numbers are from 5000 to 17000,0.0 to 0.09, respectively. The hydraulic diameter divided by radius of gyration is 46.4. The results show that local heat transfer distribution in serpentine channel is similar to different Reynold numbers. The local and average heat transfer coefficient increases with the augment of the Reynold number. The spanwise of averaged heat transfer coefficient distributes in multi- ple-peak form along the flow direction. The heat transfer enhancement by rib turbulators decreases along the flow direction. The radial outflow Nusselt number (Nu) increases and the radial inflow Nu decreases in trailing surface with the augment of the rotation number. The local heat transfer coefficient in downstream of turning area is changed by Coriolis force. The high heat transfer area of intercostal is shifted from downstream of the first rib to the middle of two ribs.
出处 《推进技术》 EI CAS CSCD 北大核心 2015年第6期899-906,共8页 Journal of Propulsion Technology
基金 国家重点基础研究发展规划资助项目(2013CB035702)
关键词 涡轮叶片 带肋通道 对流传热 旋转数 瞬态液晶 Turbine blade Ribbed channel Convective heat transfer Rotation number Transition liquid crystal
  • 相关文献

参考文献18

  • 1Han J C. Turbine Blade Cooling Studies at Texas A&M University:1980-2004 [J]. Journal of Thermophysics And Heat Transfer, 2006, 20(2):161-187.
  • 2Han J C, Dutta S, Ekkad S V. Gas Turbine Heat Transfer and Cooling Technology[M]. New York: Taylor and Francis, 2000.
  • 3Han J C, Huh M. Recent Studies in Turbine Blade Internal Cooling[J]. Heat Transfer Research, 2010, 41(8):803-828.
  • 4Huang S C, Liu Y H. High Rotation Number Effect on Heat Transfer in a Leading Edge Cooling Channel with Three Channel Orientations[R]. ASME 2012-GT -68389.
  • 5Schroll M, Lange L, Elfert M. Investigation of the Effect of Rotation on the Flow in a Two-Pass Cooling System with Smooth and Ribbed Walls Using PIV[R]. ASME 2011-GT-46427.
  • 6Egger C, Wolgersdorf J, Schnieder M. Heat Transfer Measurements in an Internal Cooling System Using a Transient Technique with Infrared Thermography[R]. ASME 2012-GT-69160.
  • 7Mayo I, Arts T, Clinecemsillie J, et al. Spatially Resolved Heat Transfer Coefficient in a Rib-Roughened Channel under Coriolis Effects[R]. ASME 2013-GT-94506.
  • 8Elfert M, Voges M, Klinner J. Detailed Flow Investigation Using PIV in Rotating Square-Sectioned Two-Pass Cooling System with Ribbed Walls[R]. ASME 2008-GT-51183.
  • 9Schüler M, Zehnder F, Weigand B, et al. The Effect of Side Wall Mass Extraction on Pressure Loss and Heat Transfer of a Ribbed Rectangular Two-Pass Internal Cooling Channel[R]. ASME 2009-GT-59481.
  • 10Bunker R S, Wetzel T G, Rigby D L. Heat Transfer in a Complex Trailing Edge Passage for a High Pressure Turbine Blade - Part 1: Experimental Measurements[R]. ASME 2002-GT-30212.

二级参考文献49

  • 1邓宏武,陶智,徐国强,丁水汀.旋转状态下有转角带肋U形通道内换热实验研究[J].大连理工大学学报,2001,41(z1):38-41. 被引量:16
  • 2苏福彬,朱惠人,郭涛,许都纯.内冷通道带肋和出流孔壁面的换热研究[J].航空动力学报,2009,24(7):1500-1506. 被引量:14
  • 3刘湘云,丁水汀,陶智,徐国强.不同肋间距变截面回转通道内的流阻和换热特性[J].航空动力学报,2004,19(5):640-644. 被引量:18
  • 4Han J C. Heat transfer and friction in channels with two opposite rib roughened walls[J].ASME Journal of Heat Transfer, 1984,106(4) : 774-781.
  • 5Taslim M E, Li T, Spring S D. Measurements of heat transfer coefficients and friction factors in passages ribroughened on all walls[J]. ASME Journal of Turbomachinery, 1998,120(2) : 564-570.
  • 6Han J C. Heat transfer and friction in rectangular channels with rib turbulators[J]. ASME Journal of Heat Transfer, 1988,110(2):321-328.
  • 7Korotky G J, Taslim M E. Rib heat transfer coefficient measurements in a rib roughened square passage[J]. ASME Journal of Turbomachinery, 1998, 120 (2): 376-385.
  • 8Wang Z, Ireland P T, Kohler S T, et al. Heat transfer measurements to a gas turbine cooling passage with inclined ribs[J]. ASME Journal of Turbomachinery, 1998, 120(1) :63-69.
  • 9Chanteloup D,Juaneda Y, Bolcs A. Combined 3D flow and heat transfer measurements in a 2-pass internal coolant passage of gas turbine airfoils[J]. Journal of Turbomachinery,2002,124(4):710-718.
  • 10Chen Y, Nikitopoulos D E, Hibbs R, et al. Detailed mass transfer distribution in a ribbed coolant passage with a 180° bend[J]. International Journal of Heat and Mass Ttransfer,2000,43(8):1479-1492.

共引文献44

同被引文献13

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部