期刊文献+

当量比对液体燃料旋转爆轰发动机爆轰影响实验研究 被引量:37

Experimental Study on Effects of Equivalence Ratio on Detonation Characteristics of Liquid-Fueled Rotating Detonation Engine
下载PDF
导出
摘要 为了研究液态燃料连续旋转爆轰波起爆机理和不同工况下的旋转爆轰波特性,采用了环形阵列式精细雾化装置,进行了汽油/富氧空气组合的连续旋转爆轰试验。试验成功起爆并实现了旋转爆轰波的自持传播,爆轰波传播频率为2.1-2.4k Hz,传播速度为1022.2-1171.8m/s。该发动机上旋转爆轰波始终为同向传播模态,存在单波头、双头波和多波头同时存在的混合传播模态,旋转爆轰波传播速度存在亏损。试验工况范围内,旋转爆轰波的传播速度随总推进剂的质量流量增大而增加;在一定工况范围内,同一当量比工况下,旋转爆轰波压力值随总推进剂的质量流量增大而增加;旋转爆轰波压力极大值出现在当量比1.1附近。 To study the initiation mechanism and characteristics of liquid-fueled rotating detonation wave, the gasoline/oxygen-enriched air continuous rotating detonation engine with fine atomization devices in a ringshaped arrangement has been studied experimentally under different experimental conditions. The formation and self sustaining transmission of rotating detonation wave have been realized. Its propagation frequency and rotating velocity range from 2.1 kHz to 2.4 kHz and from 1022.2 m/s to 1171.8 m/s, respectively. The rotating detonation wave propagates in one direction all the time. There are three kinds of propagation modes existing at the same time: single-wave, double-waves and multiple-waves. The propagation velocity of rotating detonation wave increases with the increase of total mass flow rate of propellant under all test conditions. However, the pressure peak of rotating detonation wave only increases with the increase of total mass flow rate of propellant under specific work conditions when the equivalence ratio is the same. The maximum of this pressure peak appears when the equivalence ratio is about 1.1.
出处 《推进技术》 EI CAS CSCD 北大核心 2015年第6期947-952,共6页 Journal of Propulsion Technology
基金 国家自然科学基金(11472138) 国防预研基金(9140c30020202120c30) 中央高校基本科研业务专项资助(30920130112007)
关键词 连续旋转爆轰发动机 爆轰波 环形阵列式精细雾化装置 汽油/富氧空气混合物 Continuous rotating detonation engine Detonation wave Fine atomization devices in a ringshaped arrangement Gasoline/oxygen-enriched air mixture
  • 相关文献

参考文献6

二级参考文献67

  • 1邵业涛,刘勐,王健平.圆柱坐标系下连续旋转爆轰发动机的数值模拟[J].推进技术,2009,30(6):717-721. 被引量:18
  • 2Roy G D, Frolov S M, Borisov A A, et al. Pulse detonation propulsion : challenges, current statues and future perspective [J]. Progress in Energy and Combustion Science, 2004, 30(6) :545 - 672.
  • 3Voitsekhovskii B V. Stationary detonation [ J]. Doklady Akademii Nauk UzSSR, 1959,129 (6) : 1254 - 1256.
  • 4Mikhailov V V,Topchian M E. To the studies of continuous detonation in an annular channel [ J]. Combustion, Explosion, and Shock Wave, 1965, 1 (4) :12 - 14.
  • 5Bykovskii F A, Mitrofanov V V. Detonation combustion of a gas mixture in a cylindrical chamber [ J ]. Combustion, Explosion, and Shock Wave, 1980, 16 (5).
  • 6Bykovskii F A, Mitrofanov V V. A continuous spin detonation in liquid fuel sprays [ C ]. Moscow : Control of Detonation Processes, Elex-KM Publ, 2000:209 -211.
  • 7Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous spin detonations [ J ]. Journal of Propulsion and Power, 2006, 22 (6) :1204 - 1216.
  • 8Zhdan S A, Bykovskii F A, Vedernikov E F. Mathematical modeling of a rotating detonation wave in a hydrogenoxygen mixture[J].Combustion, Explosion, and Shock Wave, 2007, 43 (4) :449 -459.
  • 9Lentsch A, Bec R, Serre L,et al. Overview of current French activities on PDRE and continuous detonation wave rocket engines [ R]. AIAA 2005-3232.
  • 10Daniau E, Falempin F, Bykovskii F A,et al. Continuous detonation wave propulsion systems : first step toward operational engines [ R ]. ISABE 2005-1302.

共引文献87

同被引文献159

引证文献37

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部