期刊文献+

Nonlinear Exact Solutions of the 2-Dimensional Rotational Euler Equations for the Incompressible Fluid

Nonlinear Exact Solutions of the 2-Dimensional Rotational Euler Equations for the Incompressible Fluid
原文传递
导出
摘要 In this paper, the Clarkson-Kruskal direct approach is employed to investigate the exact solutions of the 2-dimensionai rotationai Euler equations for the incompressible fluid. The application of the method leads to a system of completely solvable ordinary differential equations. Several special cases are discussed and novel nonlinear exact solutions with respect to variables x and y are obtained. It is'of interest to notice that the pressure p is obtained by the second kind of curvilinear integral and the coefficients of the nonlinear solutions are solitary wave type functions like tanh( kt /2 ) and sech (kt/2) due to the rotational parameter k ≠ O. Such phenomenon never appear in the classical Euler equations wherein the Coriolis force arising from the gravity and Earth's rotation is ignored. Finally, illustrative numerical figures are attached to show the behaviors that the exact solutions may exhibit.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2015年第5期613-618,共6页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No.11301269 Jiangsu Provincial Natural Science Foundation of China under Grant No.BK20130665 the Fundamental Research Funds KJ2013036 for the Central Universities Student Research Training under Grant No.1423A02 of Nanjing Agricultural University the Research Grant RG21/2013-2014R from the Hong Kong Institute of Education
关键词 rotational Euler equations incompressible fluids Clarkson-Kruskal direct method similarity re-ductions nonlinear exact solutions 不可压缩流体 欧拉方程 旋转参数 非线性解 精确解 二维 常微分方程组 科里奥利力
  • 相关文献

参考文献32

  • 1P.H. Chavanis and J. Sommeria, Phys. Rev. Lett. 78 (1997) 3302.
  • 2E. Cafaro, D. Grasso, F. Pegoraro, F. Porcelli, and A. Saluzzi, Phys. Rev. Lett. 80 (1998) 4430.
  • 3A.J. Leggett, Rev. Mod. Phys. 73 (2001) 307.
  • 4S. Bonazzola, E. Gourgoulhon, and J.A. Marck, Phys. Rev. D 56 (1997) 7740.
  • 5V.M. Canuto and M.S. Dubovikov, Modeling Mesoscale Eddies, Ocean Modell. 8 (2005) 1.
  • 6C. Girard, R. Benoit, and M. Desgagn~, Mon. Weather Rev. 133 (2005) 1463.
  • 7S. Kurien, V.S. L'vov, I. Procaccia, and K.R. Sreenivasan, Phys. Rev. E 61 (2000) 407.
  • 8V.I. Arnold, C.R. Acad. Sci. Paris 261 (1965) 17.
  • 9S. Zelik, Glasgow Math. J. 49 (2007) 525.
  • 10S. Zelik, Weak Spatially Non-Decaying Solutions for the 3D Navier-Stokes Equations in Cylindrical Domains, eds. by C. Bardos and A. Fursikov, Instability in Models Con- nected with Fluid Flows, International Math. Series, 5-6, Springer, New York (2008).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部