期刊文献+

关于非扩张映射的不动点问题的粘性迭代算法的强收敛定理

Strong Convergence Theorems by A Viscosity Iterative Method for Fixed Point Problems of Nonexpansive Mappings in Banach Spaces
下载PDF
导出
摘要 该文首先研究吸引非扩张映射的性质,然后在一致光滑Banach空间里,用这些性质研究两个非扩张映射的不动点问题的粘性迭代算法.作为应用,在Banach空间或Hilbert空间里,得到了关于变分不等式问题,不动点问题和均衡问题的强收敛定理.所得结果提高和推广了许多最近的相关结果. In this paper, we first study some properties of attracting nonexpansive mappings. Furthermore, we use these properties to investigate some viscosity iterative methods for fixed point problems of two nonexpansive mappings in uniformly smooth Banach space. As an application, we obtain some strong convergence theorems for variational inequality problems, fixed point problems and equilibrium problems in Banach spaces or Hilbert spaces. The results obtained in this paper improve and extend many recent ones announced by many others in this literature.
作者 蔡钢
出处 《数学物理学报(A辑)》 CSCD 北大核心 2015年第3期487-502,共16页 Acta Mathematica Scientia
基金 国家自然科学基金(11171172 11401063) 高等学校博士学科点专项科研基金(20120002110044) 重庆市自然科学基金(cstc2014jcyjA00016) 重庆师范大学博士启动基金(14XLB002)资助
关键词 不动点 变分不等式 强收敛 非扩张映射 BANACH空间 Fixed point Variational inequality Strong convergence Nonexpansive mapping Banach space.
  • 相关文献

参考文献2

二级参考文献17

  • 1Xu Hong-kun. Inequalities in Banach spaces with applications[J]. Nonlinear Anal, 1991,16 : 1127-1138.
  • 2Giuseppe Marino, Xu Hong-kun. Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces[J]. J Math Anal Appl, 2007, 329(1): 336-346.
  • 3Tan K K, Xu Hong-kun. Fixed point iteration process for asymptotically nonexpansive mappings[J]. Proc Amer Math Soc,1994,122:733-739.
  • 4Deimling K. Zeros of accretive operators [J]. Manuscript Math, 1974,13 : 365-374.
  • 5Martin R H. Defferential equations on closed subsets of a Banach space[J]. Trans Amer Math Soc, 1973,179: 399-414.
  • 6CENG Lu-chuan, YAO Jen-chih.A hybrid iterative scheme for mixed equilibrium problems and fixed point problems[ J]. J Comput Appl Math, 2008,214( 1 ) : 185-201.
  • 7Browder F E. Existence and approximation of solutions of nonlinear variational inequalities[J]. Proc Natl Acacl Sci USA, 1966,56(4) : 1080-1086.
  • 8Takahashi W, Zembayashi K. Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces[ J]. Nonlinear Anal ,2009,70( 1 ) :45-57.
  • 9Takahashi S, Takahashi W. Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces[ J]. J Math Anal Appl,2007,331( 1 ) :506-515.
  • 10Qin X L, Shang M, Su Y.A general iterative method for equilibrium problem and fixed point problems in Hilbert spaces[ Jl. Nonlinear Anal, 2008,69( 11 ) : 389%3909.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部