期刊文献+

具有时滞和扩散的随机捕食-食饵系统 被引量:10

A Stochastic Predator-Prey System with Time Delays and Prey Dispersal
下载PDF
导出
摘要 该文建立一个具有时滞和食饵扩散的随机捕食-食饵模型.首先,确定系统对任何正初始值存在唯一全局正解;其次,给出了种群灭绝与平均持续生存的条件;最后,给出数值例子支撑该文的结论. In this paper, a stochastic predator-prey system with time delays and prey dispersal in two-patch environments is investigated. Firstly, a unique positive solution for the system with positive initial value is obtained. Secondly, the conditions for the extinction of species and persistent in the mean of the solution for system(1.1). Finally, computer simulations are carried out to verify our results.
作者 张树文
机构地区 集美大学理学院
出处 《数学物理学报(A辑)》 CSCD 北大核心 2015年第3期592-603,共12页 Acta Mathematica Scientia
基金 国家自然科学基金(31272653 11301216)资助
关键词 随机扰动 时滞与扩散 捕食-食饵模型 灭绝 平均持续生存 Random perturbation Time delays and dispersal Predator-prey model Extinction Persistent in the mean.
  • 相关文献

参考文献16

  • 1Pao C. Global asymptotic stability of Lotka-Volterra three-species reaction-diffusion systems with time delays. J Math Anal Appl, 2003, 281:186 204.
  • 2Guo H, Song X. An impulsive predator-prey system with modified Leslie-Cower and Holling type II schemes. Chaos Solitons and solitals, 2008, 36:1320-1331.
  • 3Ling B, Zhang Q, Gao Y H. The dynamic of pest control pollution model with age structure and time delay. Applied mathematics and Computation, 2010, 216:2814-2823.
  • 4Liu B, Teng Z, Chen L. Analysis of predator-prey model with Holling II functional response concerning impulsive control strategy. Comput Appl Math, 2006, 193:347-362.
  • 5Nindjin A F, Aziz-Alaoui M A, Cadivel M. Analysis of a predator-prey model with modified Ledlie-Gower and Holling II schemes with time delay. Nonlinear Analysis: Real World Applications, 2006, 7:1104-1118.
  • 6Mandal P S, Banerjee M. Stochastic persistence and stationary distribution in a Holling-Tanner type prey-predator model. Physica A, 2012, 391:1216-1233.
  • 7Chen J J, Jiang D Q, Li X Y. Qualitative analysis of a stochastic ratio-dependent predator-prey system. Journal of Computational and Applied Mathematics, 2011, 235:1326-1341.
  • 8Ji C Y, Jiang D Q, Shi N Z. Analysis of a predator-prey model with modified Lesilie-Gower and Holling II schemes with stochastic perturbation. J Math Anal Appl, 2009, 359:482-498.
  • 9Atsushi Yagi, Ta Viet Ton. Dynamic of a stochastic predator-prey population. Applied mathematics and Computation, 2011, 218:3100-3109.
  • 10Liu M, Wang K. Survival analysis of a stochastic coopertion system in a polluted environment. J Biol Sys, 2011,19:183-204.

同被引文献30

引证文献10

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部