期刊文献+

基于领域情感词典的中文微博情感分析 被引量:20

Analysis of Chinese micro-blog emotion which based on field of emotional dictionary
下载PDF
导出
摘要 为了分析中文微博中海量的情感信息,文中提出了一种中文微博情感分析策略,能够有效分析出微博中的情感倾向。为了能准确分析出某领域微博情感倾向,本文构建了领域情感词典,具有自动识别、扩展等功能,减少了人工标注的繁琐。同时考虑到上下文中情感副词等影响,构建了情感副词词典,更加全面的分析情感倾向。最后通过实验表明本文提出的基于领域情感词典的分析策略有一定的可行性和准确率。 In order to analyze the massive emotional information in Chinese micro-blog, this article proposes a Chinese micro-blog sentiment analysis strategy, and it can analyze the emotional tendencies effectively in the micro-blog. In order to analyze the emotional tendencies of a field more accurately, this paper builds a kind of emotional dictionary through mood words with automatic identification, extended function, reduces cumbersome manual annotation. Considering the influence of emotional adverbs and expressions in the context, we build the emotional adverbs dictionary and micro-blog expressions which will analyze emotion tendency more comprehensively. In order to analyze the emotional tendencies more comprehensive, and solve the problem of more and more internet words, it constructs network vocabulary classifier to find and mark internet words. Finally, experiments show that the proposed analyze strategy which based on emotional dictionary has certain feasibility and accuracy.
出处 《电子设计工程》 2015年第12期18-21,共4页 Electronic Design Engineering
关键词 微博 情感分析 领域情感词典 分析策略 micro-blog sentiment analysis field of emotional dictionary strategy analysis
  • 相关文献

参考文献7

  • 1周胜臣,瞿文婷,石英子,施询之,孙韵辰.中文微博情感分析研究综述[J].计算机应用与软件,2013,30(3):161-164. 被引量:81
  • 2Turney,Peter D,Littman L. Measuring praise and criticism: Inference of semantic orientation from association. In: ACM Transactions on Information Systems [M]. New York: ACM Press, 2003.
  • 3朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 4张珊,于留宝,胡长军.基于表情图片与情感词的中文微博情感分析[J].计算机科学,2012,39(S3):146-148. 被引量:55
  • 5WANG Xiao-long,WEI Fu-ru,LIU Xiao-hua,et al. Topic Sentiment Analysis in Twitter:A Graph-based Hashtag Senti- ment Classification Approach Conference on Information [C]//Proceeding of 20th ACM and Knowledge Management (CIKM), Glasgow, 2011.
  • 6JIANG Long,YU Mo,ZHOU Ming,et al. 2011. Target- dependent Twitter Sentiment Classifica-tion[C]//ACL 2011.
  • 7ICTCLAC汉语分词系统[EB/OL].[2012-07-02]http://ictclas.org/ictclas_download.aspx.

二级参考文献39

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2Vasileios Hatzivassiloglou, Kathleen R. McKeown. Predicting the semantic orientation of adjectives[A]. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C], 1997:174- 181.
  • 3Turney, Peter, Littman Michael. Measuring praise and criticism: Inference of semantic orientation from association[J]. ACM Transactions on Information Systems, 2003, 21(4): 315- 346.
  • 4Turney ,Peter. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews[A]. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics[C]. 2002:417 -424.
  • 5Bo Pang,Lillian Lee, Shivanathan Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing[C]. 2002:79 - 86.
  • 6Bo Pang,Lillian Lee. Seeing Stars: Exploiting Class Relationships for Sentiment Categorizalion with respect to Rating Seales[A]. ACL2005, 115-124.
  • 7K Dave, S lawrence, DM Pennock. , Mining the peanut gallery: opinion extraction and semantic classification of product reviews[A]. WWW2003, 519-28.
  • 8Bing Liu, Minqing Hu, Junsheng Cheng. Opinion observer: analyzing and comparing opinions on the Web[A].WWW2005, 324- 351.
  • 9HowNet[R]. HowNet's Home Page. http://www. keenage.com.
  • 10刘群 李素建.基于《知网》的词汇语义相似度的计算[A]..第三届汉语词汇语义学研讨会[C].台北,2002..

共引文献437

同被引文献138

引证文献20

二级引证文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部