期刊文献+

同质信念与Black-Scholes公式定价偏差——基于期权定价的保险精算方法 被引量:2

Homogeneous Beliefs and Mispricing of Black-Scholes Model Option Pricing Model Based on Actuarial Method
下载PDF
导出
摘要 本文分析了包括BS的鞅方法在内的四种期权定价方法.Mogens Bldt和郑红给出的保险精算定价方法是非套利定价,缺少足够的理论基础.另外,存在同质信念的市场上BS定价并非完全无套利,如果对不同股票进行分散化投资,只要基础资产种类足够多,也可套取利益.不同投资者的漂移率取同一常数μ体现了他们的同质信念,与弱有效的现实市场情况相符.进一步分析得出结论,即使存在同质信念,如果μt是一个可料过程而非常数,会使得精算定价难以计算确定期望,从而无效.根据SAS软件的模拟结果,在同质信念下,精算套利定价显著高于BS鞅方法定价.通过恒生股指期权的实证检验,说明同质信念下的漂移率更适合取同一常数而不是可料过程,实证检验发现精算套利理论价格与实际价格差距很小,说明此方法比较有效. This paper analyzed the four option pricing methods including the martingale method. Mogens Bldt and Hong Zheng gave actuarial pricing methods for options respectively, however, both of the methods are not non-arbitrage lack ade- quate theoretical basis. In addition, BS pricing method is not completely non-arbitrage, for diversified investment at different stock, as long as a sufficient number, may make profit. Moreover, the same drift of stock for different investors embodies homogeneous beliefs, which complies with weak efficient market assumption in real market. Further analysis concludes that, e- ven if homogeneous beliefs exist, the drift of stock could be a previsible process, which results in difficulty to calculate and de- termine the expectations in actuarial pricing and thus invalids the pricing in actuarial method. According to the simulation run by SAS, with homogeneous assumption, actuarial non-arbitrage pricing gives significantly higher price for options than BS. Through empirical test of the Hang Seng index options, the authors believe that, under the assumption of homogeneous be- liefs, the drift should be a constant other than a previsible process and this method is very accurate.
作者 柯政 秦梦
出处 《经济数学》 2015年第2期15-20,共6页 Journal of Quantitative Economics
关键词 期权定价 同质信念 精算套利 弱有效市场 option pricing homogeneous beliefs actuarial non-arbitrage method weak efficient market
  • 相关文献

参考文献5

  • 1JOHNCHull.期权、期货和其他衍生品[M].张陶伟译.华夏出版社,1999.
  • 2F BLACK, M SCHOLES. The pricing of options and corpo- rate liabilities [J]. Journal of Economy. 1973,81 (3) :637 -- 654.
  • 3B MOGENS, R T HVIID. An actuarial approach to option pricing under the physical measure and without market as- sumptions [J]. Insurance: Mathematics and Economics. 1998,22(1) :65--74.
  • 4N SCHMITZ. Note on option pricing by actuarial considera tions [J]. Insurance, Mathematics and Economics. 2005,36 (3) :517--524.
  • 5郑红,郭亚军,李勇,刘芳华.保险精算方法在期权定价模型中的应用[J].东北大学学报(自然科学版),2008,29(3):429-432. 被引量:25

二级参考文献10

  • 1方兆本,缪柏其.随机过程[M].北京:科学出版社,2004:15-20.
  • 2Black F, Scholes M. The pricing of options and corporate liabilities[ J ]. Journal of Political Economics, 1973,81 (4) : 637 - 654.
  • 3Eberlein E, Jawd I. On the range of option prices [ J ]. Finance and Stochastics, 1997,1 : 131 - 140.
  • 4Merton R C. Applications of option-pricing theory: twenty- five years later [ J ]. American Economic Review, 1998, 6 (3) :323 - 349.
  • 5Mogens B, Rydberg T H. An actuarial approach to option pricing under the physical measure and without market assumptions [J ]. Insurance : Mathematlcs and Economics, 1998,22(1):65-73.
  • 6Norbert S. Note on option pricing by actuarial considerations [J ]. Insurance: Mathematics and Economics, 2005, 36 (1):517-518.
  • 7Hans U G, Elias S W S. Actuarial bridges to dynamic hedging and option pricing [ J ]. Insurance : Mathematics and Economics, 1996,18(3) : 183 - 218.
  • 8坎贝尔约翰Y,安德鲁W罗,麦金雷艾克雷格.金融市场计量经济学[M].朱平芳,刘弘,译.上海:上海财经大学出版社,2003:269-300.
  • 9Wendt R Q. An actuary looks at financial insurance[J]. Risk and Rewards : the Newsletter of the Investment Section of the Society of Actuaries 1999,32:4-5,17.
  • 10刘海龙,吴冲锋.期权定价方法综述[J].管理科学学报,2002,5(2):67-73. 被引量:62

共引文献24

同被引文献21

  • 1文金明,刘锡标.保险精算学原理在可转债定价模型中的运用[J].时代金融,2008,0(11):41-44. 被引量:2
  • 2肖庆宪,肖喻.信用价差的动态模型及其在期权定价中的应用[J].上海理工大学学报,2007,29(3):223-226. 被引量:6
  • 3Xue Hong,Li ChenweLAn Actuarial Approach to Con- vertible Bond Pricing in Fractional Jump-diffusion Envi- ronment[J].Computer Science and Service System,2012,8:79-82.
  • 4Es-sebaty K,Tudor C A.Multidimensional Bifractional Brownian motion:Ito and Tanaka formulas[J].Sto- chasties and Dynarmes,2007,7(3)365-388.
  • 5Russo FsTudor C.On the bifractional Brownian motion[J].Stochastic Processes and their Appbcations,2006,116(5):830-856.
  • 6Mather GsMurdoch L.Evidence for global motion inter- actions between first-order and second-order Perception,1999,27(7):761-767.
  • 7Xue Hong,Lu Jiuixiang,Li Qiaoyan,et aL Fractional jump-diffusion pricing modelunder stochastic interest rate[J].Information and Financial Engineering,2011,12,428-432.
  • 8Biagini FjHu Y,Oksendal B,et al Stochastic calculus for fractional Brownian motion and applications[M],New York:Springer,2008.
  • 9Shi Q, Yang X. Pricing Asian options in a stochastic volatility model with jumps[J], Applied Mathematics and Computation, 2014(228): 411-422.
  • 10Secovic D. Zitnanska . Analysis of the Nonlinear Option Pricing Model Under Variable Transaction Costs[J], Asia-Pacific Financial Markets, 2016, Preprint, DOI 10. 1007/s10690-016-9212-z.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部